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Preface

Only three years have passed since the first volume on environment for multi-
agent systems was published. In the meantime, the notion of environment has
become an active subject of research in multiagent systems and has stimulated
researchers of various types of multiagent systems to exploit new opportunities
for their agent systems.

In the preface of the first volume, Parunak noted that the environment has
been considered as a first-class member in the artificial life (AL) from the early
days of this research line. During the three last years, an increasing number
of multiagent system studies have successfully applied bio-inspired approaches
where the environment plays a crucial role. Several papers in this volume gener-
alize this idea to different kinds of agent systems, making it a multiagent system
design principle: “taking away complexity from the agents’ internal structure and
putting it in the environment enables designers to manage complexity better.”
This principle has influenced designers of artificial societies that apply norms
to regulate agents’ interactions up to engineers that have developed real-world
traffic control applications.

Interestingly, the environment is also the key aspect of innovative approaches
that fruitfully reconcile the cognitive and the reactive point of views by having
both kinds of agents cooperating through a delegate multiagent system soft-
ware architecture. Also very interesting is the fact that classical environmental
processes such as diffusion and evaporation are extended to process high-level
information, introducing the notion of cognitive stigmergy.

At the first E4MAS workshop in New York 2004, participating researchers
were mainly interested in comparing and sharing their visions on this both fun-
damental but still fuzzy concept of environment. Despite the fact that there was
already a general agreement that environments were essential for multiagent sys-
tems, the very question “what is the very nature of an environment?” has not
yet been fully answered.

The papers in this volume clearly illustrate how the environment can actively
support the mediation of interactions among agents. The environment can be
provided with different mechanisms and processes that enable agents to interact
in original and unexpected ways, opening interesting research perspectives for
the multiagent systems community. So, even if there still remain some differences
on how researchers translate the concept of environment within their own agency
perspective, the benefits of considering the environment as a concrete and ac-
tive entity is becoming more and more obvious. The E4MAS series volumes are
witnesses of this general awareness.

Including both selected and revised papers from the third E4MAS workshop
as well as invited papers, this volume shows the use of the environment at dif-
ferent stages of the life cycle of multiagent systems. Without doubt, we are only
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VI Preface

at the beginning of exploiting the true potential that lies in the dynamics of the
environment for multiagent systems. We hope that this volume is a stimulus for
researchers to further explore this fascinating research line further.

Acknowledgements. We are grateful to the PC members for their critical
review work. We also thank Alexander Helleboogh, Kurt Schelfthout, Tom De
Wolf, Koen Mertens, Nelis Boucké, Robrecht Haesevoets, Bart Van Eylen and
Tom Holvoet for their efforts for E4MAS. A special word of thanks to Tom De
Wolf for managing the Web site.

December 2006 Fabien Michel
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Montbéliard, France
Karl Tuyls Universiteit Maastricht, The Netherlands
Paul Valckenaers Katholieke Universiteit Leuven, Belgium
Franco Zambonelli University of Modena and Reggio Emilia, Italy

Website

http://www.cs.kuleuven.ac.be/∼distrinet/events/e4mas/2006/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Table of Contents

Models, Architecture, and Design

A Reference Architecture for Situated Multiagent Systems . . . . . . . . . . . . 1
Danny Weyns and Tom Holvoet

A Unified Model for Physical and Social Environments . . . . . . . . . . . . . . . 41
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A Reference Architecture for Situated

Multiagent Systems

Danny Weyns and Tom Holvoet

DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200 A, B-3001 Leuven, Belgium
{danny.weyns, tom.holvoet}@cs.kuleuven.be

Abstract. A reference architecture integrates a set of architectural pat-
terns that have proven their value for a family of applications. Such fam-
ily of applications is characterized by specific functionality and quality
requirements. A reference architecture provides a blueprint for develop-
ing software architectures for applications that share that common base.
As such, a reference architecture provides a means for large-scale reuse
of architectural design.

This paper gives an overview of a reference architecture for situated
multiagent systems we have developed in our research. We discuss various
architectural views of the reference architecture. Per view, we zoom in on
the main view packets, each of them containing a bundle of information
of a part of the reference architecture. For each view packet we explain
the rationale for the design choices that were made and we give built-in
mechanisms that describe how the view packet can be exercised to build
a concrete software architecture. We illustrate the use of the reference
architecture with an excerpt of the software architecture of an industrial
AGV transportation system.

1 Introduction

A reference architecture embodies a set of architectural best practices gathered
from the design and development of a family of applications with similar char-
acteristics and system requirements [28,6]. A reference architecture provides an
asset base architects can draw from when developing software architectures for
new systems that share the common base of the reference architecture. Apply-
ing the reference architecture to develop new software architectures will yield
valuable input that can be used to update and refine the reference architec-
ture. As such, a reference architecture provides a means for large-scale reuse of
architectural design.

In this paper, we give an overview of the reference architecture for situated mul-
tiagent systems we have developed in our research. We start with an introduc-
tory section that explains the reference architecture rationale and sketches the
background of the architecture. Next, we present the reference architecture. The
architecture documentation consists of three views that describe the reference ar-
chitecture from different perspectives. To illustrate the use of the reference

D. Weyns, H.V.D. Parunak, and F. Michel (Eds.): E4MAS 2006, LNAI 4389, pp. 1–40, 2007.
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2 D. Weyns and T. Holvoet

architecture, we give an excerpt of the software architecture of an industrial AGV
transportation system in which we have used the reference architecture for
architectural design. The paper concludes with an overview of related work and
conclusions.

2 Rationale and Background

In this section, we explain the reference architecture rationale. We summarize
the main characteristics and requirements of the target application domain of the
reference architecture and give a brief overview of the development process of the
architecture. Finally, we explain how the reference architecture documentation
is organized.

2.1 Reference Architecture Rationale

The general goal of the reference architecture is to support the architectural
design of situated multiagent systems. Concrete motivations are:

• Integration of mechanisms. In our research, we have developed several ad-
vanced mechanisms of adaptivity for situated agents, including selective per-
ception [48], advanced behavior-based action-selection mechanisms with roles
and situated commitments [46,44], and protocol-based communication [47].
To build a concrete application these mechanisms have to work together. The
reference architecture integrates the different mechanisms. It defines how the
functionalities of the various mechanisms are allocated to software elements of
agents and the environment and how these elements interact with one another.

• Blueprint for architectural design. The reference architecture generalizes
common functions and structures from various experimental applications
we have studied and built. This generalized architecture provides a reusable
design artifact, it facilitates deriving new software architectures for systems
that share the common base more reliably and cost effectively. On the one
hand, the reference architecture defines constraints that incarnate the com-
mon base. On the other hand, the architecture defines variation mechanisms
that provide the necessary variability to instantiate software architectures
for new systems.

• Reification of knowledge and expertise. The reference architecture embodies
the knowledge and expertise we have acquired during our research. It con-
scientiously documents the know-how obtained from this research. As such,
the reference architecture offers a vehicle to study and learn the advanced
perspective on situated multiagent systems we have developed.

2.2 Characteristics and Requirements of the Target Application
Domain of the Reference Architecture

The reference architecture for situated multiagent systems supports the archi-
tectural design of a family of software systems with the following main charac-
teristics and requirements:
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A Reference Architecture for Situated Multiagent Systems 3

• Stakeholders of the systems (users, project managers, architects, developers,
maintenance engineers, etc.) have various—often conflicting—demands on
the quality of the software. Important quality requirements are flexibility
(adapt to variable operating conditions) and openness (cope with parts that
come and go during execution).

• The software systems are subject to highly dynamic and changing operat-
ing conditions, such as dynamically changing workloads and variations in
availability of resources and services. An important requirement of the soft-
ware systems is to manage the dynamic and changing operating conditions
autonomously.

• Global control is hard to achieve. Activity in the systems is inherently
localized, i.e. global access to resources is difficult to achieve or even infeasi-
ble. The software systems are required to deal with the inherent locality of
activity.

Example domains are mobile and ad-hoc networks, sensor networks, automated
transportation and traffic control systems, and manufacturing control.

2.3 Development Process of the Reference Architecture

The reference architecture for situated multiagent systems is the result of an iter-
ative research process of exploration and validation. During our research, we have
studied and built various experimental applications that share the above speci-
fied characteristics in different degrees. We extensively used the Packet–World as
a study case for investigation and experimentation. [40,42] investigate agents’ ac-
tions in the Packet–World. [39] studies various forms of stigmergic coordination.
[44] focuses on the adaptation of agent behavior over time. [32] yields valuable
insights on the modelling of state of agents and the environment, selective per-
ception, and protocol–based communication. Another application we have used
in our research is a prototypical peer-to-peer file sharing system [48,20]. This
application applies a pheromone–based approach for the coordination of agents
that move around in a dynamic network searching for files. [38,8,31] study a
field-based approach for task assignment to automatic guided vehicles that have
to operate in a dynamic warehouse environment. Finally, [46] studies several
experimental robotic applications. The particular focus of these robotic applica-
tions is on the integration of roles and situated commitments in behavior–based
action selection mechanisms.

Besides these experimental applications, the development of the reference ar-
chitecture is considerably based on experiences with an industrial logistic trans-
portation system for warehouses [45,43,9].

In the course of building the various applications, we derived common func-
tions and structures that provided architectural building blocks for the reference
architecture. The reference architecture integrates the different agent and envi-
ronment functionalities and maps these functionalities onto software elements
and relationships between the elements. The software elements make up a sys-
tem decomposition that cooperatively implement the functionalities. This system
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4 D. Weyns and T. Holvoet

decomposition—the reference architecture—provides a blueprint for instantiat-
ing target systems that share the common base of the reference architecture.

2.4 Organization of the Reference Architecture Documentation

The architecture documentation describes the various architectural views of the
reference architecture [13]. The documentation includes a module decomposition
view and two component and connector views: shared data and communicating
processes. Each view is organized as a set of view packets. A view packet is a
small, relatively self-contained bundle of information of the reference architec-
ture, or a part of the architecture. The documentation of a view starts with a
brief explanation of the goal of the view and a general description of the view
elements and relationships between the elements. Then the view packets of the
view are presented. Each view packet consists of a primary presentation and ad-
ditional supporting information. The primary presentation shows the elements
and their relationships in the view packet. For the module decomposition view,
the primary presentations are textual in the form of tables. The primary pre-
sentations of other views are graphical with a legend that explain the meaning
of the symbols.

The supporting information explains the architectural elements in the view
packet. Each view packet gives a description of the architectural elements with
their specific properties. In addition to the explanation of the architectural ele-
ments, the supporting information describes variation mechanisms for the view
packet and explains the architecture rationale of the view packet. Variation mech-
anisms describe how the view packet can be applied to build a software architec-
ture for a concrete system. The architecture rationale explains the motivation
for the design choices that were made for the view packet.

The documentation of the reference architecture presented in this paper is de-
scriptive. Concepts and mechanisms are introduced briefly and illustrated with
examples. The interested reader finds elaborated explanations in the added ref-
erences. For a detailed formal specification of the various architectural elements,
we refer to [37].

3 Module Decomposition View

The module decomposition view shows how the situated multiagent system is
decomposed into manageable software units. The elements of the module decom-
position view are modules. A module is an implementation unit of software that
provides a coherent unit of functionality. The relationship between the modules
is is–part–of that defines a part/whole relationship between a submodule and
the aggregate module. Modules are recursively refined conveying more details in
each decomposition step.

The basic criteria for module decomposition is the achievement of quality
attributes. For example, changeable parts of a system are encapsulated in sep-
arate modules, supporting modifiability. Another example is the separation of
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A Reference Architecture for Situated Multiagent Systems 5

functionality of a system that has higher performance requirements from other
functionality. Such a decomposition allows to apply different tactics to achieve
the required performance throughout the various parts of the system. However,
other criteria can be drivers for a decomposition of modules as well. For exam-
ple, in the reference architecture, a distinction is made between common modules
that are used in all systems derived from the reference architecture, and variable
modules that differ across systems. This decomposition results in a clear orga-
nization of the architecture, supporting efficient design and implementation of
systems with the reference architecture.

Modules in the module decomposition view include a description of the inter-
faces of the modules that document how the modules are used in combination
with other modules. The interface descriptions distinguish between provided and
required interfaces. A provided interface specifies what functionality a module
offers to other modules. A required interface specifies what functionality a mod-
ule needs from other modules; it defines constrains of a module in terms of the
services a module requires to provide its functionality.

The reference architecture provides three view packets of the module decom-
position view. We start with the top-level decomposition of the situated multia-
gent system. Next, we show the primary decomposition of an agent. We conclude
with the primary decomposition of the application environment.

3.1 Module Decomposition View Packet 1: Situated Multiagent
System

Primary Presentation

System Subsystem

Situated Multiagent System Agent

Application Environment

Elements and their Properties. A Situated Multiagent System is decom-
posed in two subsystems: Agent and Application Environment. We explain the
functionalities of both modules in turn.

Agent is an autonomous problem solving entity in the system. An agent en-
capsulates its state and controls its behavior. The responsibility of an agent is
to achieve its design objectives, i.e. to realize the application specific goals it is
assigned. Agents are situated in an environment which they can perceive and
in which they can act and interact with one another. Agents are able to adapt
their behavior according to the changing circumstances in the environment. A
situated agent is a cooperative entity. The overall application goals result from in-
teraction among agents, rather than from sophisticated capabilities of individual
agents.
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6 D. Weyns and T. Holvoet

A concrete multiagent system application typically consists of agents of
different agent types. Agents of different agent types typically have different
capabilities and are assigned different application goals.

The Application Environment is the part of the environment that has to be
designed for a concrete multiagent system application. The application environ-
ment enables agents to share information and to coordinate their behavior. The
core responsibilities of the application environment are:

• To provide access to external entities and resources.
• To enable agents to perceive and manipulate their neighborhood, and to

interact with one another.
• To mediate the activities of agents. As a mediator, the environment not only

enables perception, action and interaction, it also constrains them.

The application environment provides functionality to agents on top of the de-
ployment context. The deployment context consists of the given hardware and
software and external resources such as sensors and actuators, a printer, a net-
work, a database, a web service, etc.

As an illustration, a peer-to-peer file sharing system is deployed on top of
a deployment context that consists of a network of nodes with files and possi-
bly other resources. The application environment enables agents to access the
external resources, shielding low-level details. Additionally, the application en-
vironment may provide a coordination infrastructure that enables agents to co-
ordinate their behavior. E.g., the application environment of a peer-to-peer file
share system can offer a pheromone infrastructure to agents that they can use
to dynamically form paths to locations of interest.

Thus, we consider the environment as consisting of two parts, the deployment
context and the application environment. The internal structure of the deploy-
ment context is not considered in the reference architecture. For a distributed
application, the deployment context consists of multiple processors deployed on
different nodes that are connected through a network. Each node provides an
application environment to the agents located at that node. Depending on the
specific application requirements, different application environment types may
be provided. For some applications, the same type of application environment
subsystem is instantiated on each node. For other applications, specific types are
instantiated on different nodes, e.g., when different types of agents are deployed
on different nodes.

Interface Descriptions. Figure 1 gives an overview of the interfaces of the
agent subsystem and the application environment subsystem.

The Sense interface enables an agent to sense the environment resulting in
a representation, Send enables an agent to send messages to other agents, and
Influence enables an agent to invoke influences in the environment. Influences
are attempts of agents to modify the state of affairs in the environment. These
interfaces are provided by the application environment.

The application environment requires the interface Receive to deliver mes-
sages to agents. Furthermore, the application environment requires the interface
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Fig. 1. Interfaces of agent, application environment, and deployment context

Observe from the deployment context to observe particular resources, Transmit
to send messages to agents located on other nodes, and Act to modify the state
of external resources (based on influences invoked by agents).

Finally, the deployment context requires the interface Collect to enable the
collection of state from the application environment (requested by application
environment instances in a distributed setting), and the interface Deliver to
deliver the incoming messages to the agents.

Variation Mechanisms. There are four variation mechanisms for this view
packet:

M1 Definition of Agent Types. Depending on the specific application require-
ments different agent types may be required. Agent types are characterized
by the capabilities of the agents reflected in different internal structures.
Variations on agent types are discussed in subsequent view packets and
views, see sections 3.2, 4.1, and 5.

M2 Definition of Application Environment Types. In a distributed setting, dif-
ferent application environment types may be required that are deployed on
different nodes. Application environment types differ in the functionality
they provide to the agents reflected in different internal structures. Vari-
ations in application environment types are discussed in subsequent view
packets and views, see sections 3.3, 4.2, and 5.

M3 Definition of the Domain Ontology. The ontology defines the terminology
for the application domain. Defining an ontology includes the specification
of the various domain concepts and the relationships between the concepts.
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8 D. Weyns and T. Holvoet

The domain ontology serves as a basis for the definition of the knowledge of
the agents and the state of the application environment, see the variation
mechanisms SD1 and SD2 of the component and connector shared data view
in section 4.

M4 Definition of the Interaction Primitives of the Deployment Context. To en-
able the multiagent system software deployed on a node to interact with the
deployment context, the various interaction primitives with the deployment
context have to be concretized according to the application at hand. We
distinguish between three types of interaction primitives.
(1) Observation primitives enable the multiagent system software deployed

on a node to observe external resources and collect data from other
nodes. An observation primitive indicates which resource is observed
and what type of information should be observed.

(2) Action primitives enable to access external resources. An action primi-
tive indicates the target resource and the type of action.

(3) Communication primitives enable to transmit low-level formatted mes-
sages via the deployment context. A low-level formatted message is a
data structure that represents a message exchanged between a sender
and one or more addressees and that is transmitted via the deployment
context.

Design Rationale. The main principles that underly the decomposition of a
situated multiagent system are:

• Decentralized control. In a situated multiagent system, control is divided
among the agents situated in the application environment. Decentralized
control is essential to cope with the inherent locality of activity, which is
a characteristic of the target applications of the reference architecture, see
section 2.2.

• Self-management. In a situated multiagent system self-management is essen-
tially based on the ability of agents to adapt their behavior. Self-management
enables a system to manage the dynamic and changing operating conditions
autonomously, which is an important requirement of the target applications
of the reference architecture, see section 2.2.

However, the decentralized architecture of a situated multiagent system implies
a number of tradeoffs and limitations.

• Decentralized control typically requires more communication. The perfor-
mance of the system may be affected by the communication links between
agents.

• There is a trade-off between the performance of the system and its flexibility
to handle disturbances. A system that is designed to cope with many distur-
bances generally needs redundancy, usually to the detriment of performance,
and vice versa.

• Agents’ decision making is based on local information only, which may lead
to suboptimal system behavior.
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A Reference Architecture for Situated Multiagent Systems 9

These tradeoffs and limitations should be kept in mind throughout the design
and development of a situated multiagent system. Special attention should be
payed to communication which could impose a major bottleneck.

Concerns not Covered. We touch on a number of other concerns that are not
covered by the reference architecture.

Crosscutting Concerns. Concerns such as security, monitoring, and logging usu-
ally crosscut several architecture modules. Crosscutting concerns in multiagent
systems are hardly explored and are open research problems. An example of early
research in this direction is [17]. That work applies an aspect-oriented software
engineering approach, aiming to integrate crosscutting concerns in an application
in a non-invasive manner. As most current research on aspect-oriented software
development, the approach of [17] is mainly directed at the identification and
specification of aspects at the programming level. Recently, the relationship be-
tween aspects and software architecture became subject of active research, see
e.g. [4,35,14].

Human-Software Interaction. The reference architecture does not explicitly han-
dle human-software interaction. Depending on the application domain, the role
of humans in multiagent systems can be very diverse. In some applications hu-
mans can play the role of agents and interact directly—or via an intermediate
wrapper—with the application environment. In other applications, humans can
be part of the deployment context with which the multiagent system application
interacts.

3.2 Module Decomposition View Packet 2: Agent

Primary Presentation

Subsystem Module

Agent Perception

Decision Making

Communication

Elements of the View. The Agent subsystem is decomposed in three modules:
Perception, Decision Making and Communication. We discuss the responsibili-
ties of each module in turn.

Perception is responsible for collecting runtime information from the environ-
ment. The perception module supports selective perception [48]. Selective per-
ception enables an agent to direct its perception according to its current tasks.
To direct its perception agents select a set of foci and filters. Foci allow the
agent to sense the environment only for specific types of information. Sensing
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10 D. Weyns and T. Holvoet

results in a representation of the sensed environment. A representation is a data
structure that represents elements or resources in the environment. The per-
ception module maps this representation to a percept, i.e. a description of the
sensed environment in a form of data elements that can be used to update the
agent’s current knowledge. The selected set of filters further reduces the percept
according to the criteria specified by the filters. While a focus enables an agent
to observe the environment for a particular type of information, a filter enables
the agent to direct its attention within the sensed information.

Decision Making is responsible for action selection. The action model of the
reference architecture is based on the influence–reaction model introduced in [15].
This action model distinguishes between influences that are produced by agents
and are attempts to modify the course of events in the environment, and reac-
tions, which result in state changes in the environment. The responsibility of the
decision making module is to select influences to realize the agent’s tasks, and
to invoke the influences in the environment [41].

To enable situated agents to set up collaborations, behavior-based action se-
lection mechanisms are extended with the notions of role and situated commit-
ment [46,33,32,47]. A role represents a coherent part of an agent’s functionality
in the context of an organization. A situated commitment is an engagement of
an agent to give preference to the actions of a particular role in the commit-
ment. Agents typically commit relative to one another in a collaboration, but an
agent can also commit to itself, e.g. when a vital task must be completed. Roles
and commitments have a well-known name that is part of the domain ontology
and that is shared among the agents in the system. Sharing these names enable
agents to set up collaborations via message exchange. We explain the coordina-
tion among decision making and communication in the design rationale of this
view packet.

Communication is responsible for communicative interactions with other
agents. Message exchange enables agents to share information and to set up col-
laborations. The communication module processes incoming messages, and pro-
duces outgoing messages according to well-defined communication protocols [47].
A communication protocol specifies a set of possible sequences of messages. We
use the notion of a conversation to refer to an ongoing communicative inter-
action. A conversation is initiated by the initial message of a communication
protocol. At each stage in the conversation there is a limited set of possible mes-
sages that can be exchanged. Terminal states determine when the conversation
comes to an end.

The information exchanged via a message is encoded according to a shared
communication language. The communication language defines the format of
the messages, i.e. the subsequent fields the message is composed of. A message
includes a field with a unique identifier of the ongoing conversation to which the
message belong, fields with the identity of the sender and the identities of the
addressees of the message, a field with the performative [5] of the message, and a
field with the content of the message. Communicative interactions among agents
are based on an ontology that defines a shared vocabulary of words that agents
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use in messages. The ontology enables agents to refer unambiguously to concepts
and relationships between concepts in the domain when exchanging messages.
The ontology used for communication is typically a part of the integral ontology
of the application domain, see section 3.1.

Interface Descriptions. The interface descriptions specify how the modules
of an agent are used with one another, see Fig. 2. The interfacing with the data
repositories is discussed in section 4.1.
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Fig. 2. Interfaces of the agent modules

The provided Request interface of the perception module enables decision
making and communication to request a perception of the environment. To sense
the environment according to their current needs, decision making and commu-
nication pass on a focus and filter selector to the perception module. Such a
selector specifies a set of foci and filters that the perception module uses to
sense the environment selectively [48].

The provided interface of agent, Receive, delegates for processing incoming
messages to the provided Receive interface of the communication module. The
ports decouple the internals of the agent subsystem from external elements.

The perception module’s required Sense interface is delegated to the agent’s
required Sense interface. Sensing results in a representation of the environment
according to the selected foci. Similarly, the Send interface of the communication
module and the Influence interface of the decision making module are delegated
to the required interfaces of agent with the same name.
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12 D. Weyns and T. Holvoet

Variation Mechanisms. This view packet provides the following variation
mechanisms:

M5 Omission of the Communication module. For agents that do not commu-
nicate via message exchange, the communication module can be omitted.
An example is an ant-like agent system in which the agents communicate
via the manipulation of marks in the environment.

M6 Definition of Foci and Focus Selectors. Foci enable agents to sense the envi-
ronment selectively. The definition of the foci in the agent system includes
the specification of the kind of data each focus targets, together with the
scoping properties of each focus. The definition of focus selectors includes
the specification of the various combinations of foci that can be used to
sense the environment.

M7 Definition of Representations. Sensing the environment results in repre-
sentations. Representations are defined by means of data structures that
represent elements and resources in the environment. The definition of
representations must comply to the ontology defined for the domain, see
variation mechanism M3 in section 3.1.

M8 Definition of Filters and Filter Selectors. Filters can be used by agents
to filter perceived data. The definition of the filters in the agent system
includes the specification of the kind of data each filter aims to filter and the
specific properties of each filter. The definition of filter selectors includes
the specification of the various combinations of filters that can be used to
filter percepts.

M9 Definition of Influences. Influences enable agents to modify the state of
affairs in the environment. The definition of an influence includes the spec-
ification of an operation that is provided by the application environment
and that can be invoked by the agents.

M10 Definition of Roles and Situated Commitments and Specification of an Ac-
tion Selection Mechanism. Each role in the agent system is defined by a
unique name and a description of the semantics of the role in terms of the
influences that can be selected in that role as well as the relationship of the
role to other roles in the agent system. Each situated commitment in the
agent system is defined by a unique name and a description of the semantics
of the commitment in terms of roles defined in the agent system. Situated
agents use a behavior-based action selection mechanism. Depending on the
system requirements a particular action selection mechanism has to be de-
fined. Roles and situated commitments have to be mapped onto the chosen
action selection mechanism. [32] discusses an example where roles and situ-
ated commitments are mapped onto a free-flow decision making tree.

M11 Definition of the Communication Language and the Ontology. The com-
munication language defines the format of messages. The definition of the
communication language includes the specification of identities for agents
and conversations, the specification of the various performatives of the
language, and the format of the content of messages. The definition of
the ontology for communication includes the specification of the vocabu-
lary of words that represent the domain concepts used in messages and
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the relationships between the concepts. The ontology for communication is
typically a part of the integral domain ontology, see variation mechanism
M3 in section 3.1.

M12 Definition of Communication Protocols. The definition of a concrete com-
munication protocol includes the specification of various steps of the pro-
tocol, i.e. the conditions and the effects for each step in the protocol [47].
An important aspect of this latter is the activation/deactivation of situ-
ated commitments. Statecharts [18,3] are one possible approach to specify
a communication protocol.

Design Rationale. Each module in the decomposition encapsulates a particu-
lar functionality of the agent. By minimizing the overlap of functionality among
modules, the architect can focus on one particular aspect of the agent’s function-
ality. Allocating different functionalities of an agent to separate modules results
in a clear design. It helps to accommodate change and to update one module
without affecting the others, and it supports reusability.

Perception on Command. Selective perception enables an agent to focus its at-
tention to the relevant aspects in the environment according to its current tasks.
When selecting actions and communicating messages with other agents, decision
making and communication typically request perceptions to update the agent’s
knowledge about the environment. By selecting an appropriate set of foci and
filters, the agent directs its attention to the current aspects of its interest, and
adapts it attention when the operating conditions change.

Coordination between Decision Making and Communication. The overall be-
havior of the agent is the result of the coordination of two modules: decision
making and communication. Decision making is responsible for selecting suit-
able influences to act in the environment. Communication is responsible for the
communicative interactions with other agents. Decision making and communi-
cation coordinate to complete the agent’s tasks. For example, agents can send
each other messages with requests for information that enable them to act more
purposefully. Decision making and communication also coordinate during the
progress of a collaboration. Collaborations are typically established via message
exchange. Once a collaboration is achieved, the communication module activates
a situated commitment. This commitment will affect the agent’s decision making
towards actions in the agent’s role in the collaboration. This continues until the
commitment is deactivated and the collaboration ends.

Ensuring that both decision making and communication behave in a coor-
dinated way requires a careful design. On the other hand, the separation of
functionality for coordination (via communication) from the functionality to per-
form actions to complete tasks has several advantages, including clear design,
improved modifiability and reusability. Two particular advantages of separating
communication from performing actions are: (1) it allows both functions to act
in parallel, and (2) it allows both functions to act at a different pace. In many
applications, sending messages and executing actions happen at different tempo.
A typical example is robotics, but it applies to any application in which the time
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required for performing actions in the environment differs significantly from the
time to communicate messages. Separation of communication from performing
actions enables agents to reconsider the coordination of their behavior while they
perform actions, improving adaptability and efficiency.

3.3 Module Decomposition View Packet 3: Application
Environment

Primary Presentation

Subsystem Module

Application Environment Representation Generator

Observation & Data Processing

Interaction

Low-Level Control

Communication Mediation

Communication Service

Synchronization & Data Processing

Elements and their Properties. The Application Environment subsystem
is decomposed in seven modules. We discuss the responsibilities of each of the
modules in turn.

The Representation Generator provides the functionality to agents for per-
ceiving the environment. When an agent senses the environment, the representa-
tion generator uses the current state of the application environment and possibly
state collected from the deployment context to produce a representation for the
agent. Agents’ perception is subject to perception laws that provide a means to
constrain perception. A perception law defines restrictions on what an agent can
sense from the environment with a set of foci.

Observation & Data Processing provides the functionality to observe the
deployment context and collect date from other nodes in a distributed setting.
The observation & data processing module translates observation requests into
observation primitives that can be used to collect the requested data from the de-
ployment context. Data may be collected from external resources in the deploy-
ment context or from the application environment instances on other nodes in a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Reference Architecture for Situated Multiagent Systems 15

distributed application. Rather than delivering raw data retrieved from the
observation, the observation & data processing module can provide additional
functions to pre-process data, examples are sorting and integration of observed
data.

Interaction is responsible to deal with agents’ influences in the environment.
Agents’ influences can be divided in two classes: influences that attempt to mod-
ify state of the application environment and influences that attempt to modify
the state of resources of the deployment context. An example of the former is
an agent that drops a digital pheromone in the environment. An example of the
latter is an agent that writes data in an external data base. Agents’ influences
are subject to action laws. Action laws put restrictions on the influences invoked
by the agents, representing domain specific constraints on agents’ actions. For
influences that relate to the application environment, the interaction module
calculates the reaction of the influences resulting in an update of the state of
the application environment. Influences related to the deployment context are
passed to the Low-Level Control module.

Low-Level Control bridges the gap between influences used by agents and the
corresponding action primitives of the deployment context. Low-level control
converts the influences invoked by the agents into low-level action primitives in
the deployment context. This decouples the interaction module from the details
of the deployment context.

The Communication Mediation mediates the communicative interactions
among agents. It is responsible for collecting messages; it provides the neces-
sary infrastructure to buffer messages, and it delivers messages to the appro-
priate agents. Communication mediation regulates the exchange of messages
between agents according a set of applicable communication laws. Communica-
tion laws impose constraints on the message stream or enforce domain–specific
rules to the exchange of messages. Examples are a law that drops messages di-
rected to agents outside the communication–range of the sender and a law that
gives preferential treatment to high-priority messages. To actually transmit the
messages, communication mediation makes use of the Communication Service
module.

Communication Service provides that actual infrastructure to transmit mes-
sages. Communication service transfers message descriptions used by agents to
communication primitives of the deployment context. For example, a FIPA ACL
message [16] consists of a header with the message performative (inform, request,
propose, etc.), followed by the subject of this performative, i.e. the content of
the message that is described in a content language that is based on a shared
ontology. Such message descriptions enable a designer to express the communica-
tive interactions between agents independently of the applied communication
technology. However, to actually transmit such messages, they have to be trans-
lated into low-level primitives of a communication infrastructure provided by
the deployment context. Depending on the specific application requirements, the
communication service may provide specific communication services to enable
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the exchange of messages in a distributed setting, such as white and yellow page
services. An example infrastructure for distributed communication is Jade [7].
Specific middleware may provide support for communicative interaction in mo-
bile and ad-hoc network environments, an example is discussed in [30].

Synchronization & Data Processing synchronizes state of the application
environment with state of resources in the deployment context as well as state
of the application environment on different nodes. State updates may relate
to dynamics in the deployment context and dynamics of state in the appli-
cation environment that happens independently of agents or the deployment
context. An example of the former is the topology of a dynamic network which
changes are reflected in a network abstraction maintained in the state of the
application environment. An example of the latter is the evaporation of digital
pheromones.

Middleware may provide support to collect data in a distributed setting. An
example of middleware support for data collection in mobile and ad-hoc net-
work environments is discussed in [29]. The synchronization & data processing
module converts the resource data observed from the deployment context into
a format that can be used to update the state of the application environment.
Such conversion typically includes a processing or integration of collected re-
source data.

Interface Descriptions. The interface descriptions specify how the modules
of the application environment are used with one another, see Fig. 3. The in-
terfacing with data repositories of the application environment is discussed in
section 4.2.

The Sense interface of the application environment delegates perception re-
quests to the Sense interface of the perception generator. To observe resources in
the deployment context, the perception generator’s required interface
CollectData depends on the CollectData interface that is provided by the
observation & data processing module. The required interface Observe of ob-
servation & data processing is delegated to Observe interface of the application
environment. The provided interface Collect of the application environment
delegates requests for state of the application environment to the Collect inter-
face of the observation & data processing module. The data that results from the
observation of resources in the deployment context and possible state collected
from other nodes is processed by the observation & data processing module
and passed to the perception generator that generates a representation for the
requesting agent.

For its functioning, the synchronization & data processing module requires the
interface Observe. The processing of this interface is delegated to the Observe
interface of the application environment. Synchronization & data processing pro-
vides the Collect interface to allow sharing of data among nodes in a distributed
setting. This interface depends on the Collect interface provided by the appli-
cation environment.

The Send interface of the application environment enables agents to send mes-
sages to other agents. The application environment delegates this interface to the
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Fig. 3. Interfaces of the application environment modules

Send interface of communication mediation that mediates the communicative in-
teraction. Communication mediation depends on the provided interface SendMSg
of the communication service to convert messages into a low-level format and
transmit them via the deployment context. For this latter, the communication
service delegates to the Deliver interface of the application environment that
depends on the message transfer infrastructure of the deployment context. The
Transmit interface of the communication service delegates the transmission of
messages to the Transmit interface of the application environment. The ap-
plication environment provides the Deliver interface to deliver incoming mes-
sages. The Deliver interface of the application environment delegates incoming
messages to the Deliver interface of the communication service. This latter
converts the messages into an appropriate format for agents and depends on
the DeliverMsg interface of communication mediation to deliver the messages.
The Receive interface of communication mediation delegates the delivering of
messages to the Receive interface of the application environment that passes
on the messages to the addressees. The provided interface Influence of the
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18 D. Weyns and T. Holvoet

application environment enables agents to invoke influences in the environment.
For influences that attempt to modify the state of resources in the deployment
context, the interaction module’s required interface Invoke depends on the in-
terface Invoke provided by the low-level control module. This latter interface
provides the functionality to convert influences into low-level action primitives
of the deployment context. The Act interface of the low-level control module del-
egates the actions to external resources to the Act interface of the application
environment that invokes the actions in the deployment context.

Variation Mechanisms. This view packet provides the following variation
mechanisms:

M13 Omission of Observation, Synchronization, and Low-Level Control. For ap-
plications that do not interact with external resources, the observation,
synchronization, and low-level control modules can be omitted. For such
applications, the environment is entirely virtual.

M14 Omission of Communication Mediation and Communication Service. For
agent systems in which agents do not communicate via message exchange,
the modules related to message exchange can be omitted, see also variation
mechanism M5 in section 3.2.

M15 Omission of Synchronization & Data Processing. For multiagent system
applications where no synchronization of state between the application
environment and the deployment context and/or between nodes is required,
the synchronization & data processing module can be omitted.

M16 Definition of Observations. Observations enable the multiagent system
to collect data from the deployment context. The definition of an ob-
servation includes the specification of the kind of data to be observed
in the deployment context together with additional properties of the
observation.

The definition of the laws for perception, interaction, and communication is
discussed in the shared data view, see section 4.2.

Design Rationale. The decomposition of the application environment can be
considered in two dimensions: horizontally, i.e. a decomposition based on the
distinct ways agents can access the environment; and vertically, i.e. a decom-
position based on the distinction between the high-level interactions between
agents and the application environment, and the low-level interactions between
the application environment and the deployment context. The decomposition is
schematically shown in Fig. 4.

The horizontal decomposition of the application environment consists of three
columns that basically correspond to the various ways agents can access the
environment: perception, communication, and action. An agent can sense the
environment to obtain a representation of its vicinity, it can exchange messages
with other agents, and an agent can invoke an influence in the environment
attempting to modify the state of affairs in the environment.
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Fig. 4. Decomposition application environment

The vertical decomposition of the application environment consists of two
rows. The top row deals with the access of agents to the application environment
and includes representation generator, communication mediation, and interac-
tion. The specification of activities and concepts in the top row is the same as
those used by the agents. The top row defines the various laws that constrain the
activity of agents in the environment. The bottom row deals with the interac-
tion of the application environment with the deployment context and consists of
observation and synchronization with data processing, communication service,
and low-level control. The functionality related to the low-level interactions of
the application environment includes: (1) support for the conversion of high-level
activity related to agents into low-level interactions related to the deployment
context and vice versa, and (2) support for pre-processing of resource data to
transfer the data into a higher-level representation useful to agents, (3) interac-
tion and synchronization among different nodes in a distributed setting.

The two-dimensional decomposition of the application environment yields a
flexible modularization that can be tailored to a broad family of application
domains. For instance, for applications that do not interact with an external de-
ployment context, the bottom layer of the vertical decomposition can be omitted.
For applications in which agents interact via marks in the environment but do
not communicate via message exchange, the column in the horizontal decompo-
sition that corresponds to message transfer (communication and communication
service) can be omitted.

Each module of the application environment is located in a particular col-
umn and row and is assigned a particular functionality. Minimizing the overlap
of functionality among modules, helps the architect to focus on one particular

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



20 D. Weyns and T. Holvoet

aspect of the functionality of the application environment. It supports reuse,
and it further helps to accommodate change and to update one module without
affecting the others.

4 Component and Connector Shared Data View

The shared data view shows how the situated multiagent system is structured
as a set of data accessors that read and write data in various shared data repos-
itories. The elements of the shared data view are data accessors, repositories,
and the connectors between the two. Data accessors are runtime components
that perform calculations that require data from one or more data repositories.
Data repositories mediate the interactions among data accessors. A shared data
repository can provide a trigger mechanism to signal data consumers of the ar-
rival of interesting data. Besides reading and writing data, a repository may
provide additional support, such as support for concurrency and persistency.
The relationship of the shared data view is attachment that determines which
data accessors are connected to which data repositories [13]. Data accessors are
attached to connectors that are attached to a data store.

The reference architecture provides two view packets of the shared data view.
First, we zoom in on the shared data view packet of agent, then we discuss the
view packet of the application environment. The data accessors in this view are
runtime instances of modules we have introduced in the module decomposition
view. We use the same names for the runtime components and the modules
(components’ names are proceeded by a colon).

4.1 C & C Shared Data View Packet 1: Agent

Primary Presentation. The primary presentation is shown in Fig. 5.

Elements and their Properties. The data accessors of the Agent view packet
are Perception, Decision Making and Communication. These data accessors are
runtime instances of the corresponding modules described in section 3.2. The
data accessors share the Current Knowledge repository.

The Current Knowledge repository contains data that is shared among the
data accessors. Data stored in the current knowledge repository refers to state
perceived in the environment, to state related to the agent’s roles and situated
commitments, and possibly other internal state that is shared among the data
accessors. The communication and decision making components can read and
write data from the repository. The perception component maintains the agent’s
knowledge of the surrounding environment. To update the agent’s knowledge of
the environment, both the communication and decision making components can
trigger the perception component to sense the environment, see the module view
of agent in section 3.2.
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Fig. 5. Shared data view of an agent

Interface Descriptions. Fig. 5 shows the interconnections between the current
knowledge repository and the internal components of the agent. These intercon-
nections are called assembly connectors [3]. An assembly connector ties one com-
ponent’s provided interface with one or more components’ required interfaces,
and is drawn as a lollipop and socket symbols next to each other. Unless stated
otherwise, we assume that the provided and required interfaces per assembly
connector share the same name.

The current knowledge repository exposes two interfaces. The provided in-
terface Update enables the perception component to update the agents knowl-
edge according to the information derived from sensing the environment. The
Read-Write interface enables the communication and decision making compo-
nent to access and modify the agent’s current knowledge.

Variation Mechanisms. This view packet provides four variation mechanisms:

SD1 Definition of Current Knowledge. Definition of current knowledge includes
the definition of the state of the agent and the specification of the knowl-
edge repository. The definition of the state of the agent has to comply
to the ontology that is defined for the multiagent system application, see
variation mechanism M3 in section 3.1. The specification of the knowledge
repository includes various aspects such as the specification of a policy for
concurrency, specification of possible event mechanisms to signal data con-
sumers, support for persistency of data, and support for transactions. The
concrete interpretation of these aspects depends on the specific require-
ments of the application at hand.
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Design Rationale. The shared data style decouples the various components of
an agent. Low coupling improves modifiability (changes in one element do not
affect other elements or the changes have only a local effect) and reuse (elements
are not dependent on too many other elements). Low coupled elements usually
have clear and separate responsibilities, which makes the elements better to
understand in isolation. Decoupled elements do not require detailed knowledge
about the internal structures and operations of the other elements. Due to the
concurrent access of the repository, the shared data style requires special efforts
to synchronize data access.

Both communication and decision making delegate perception requests to
the perception component. The perception component updates the agent knowl-
edge with the information derived from perceiving the environment. The current
knowledge repository makes the up-to-date information available for the com-
munication and decision making component. By sharing the knowledge, both
components can use the most actual data to make decisions.

The current knowledge repository enables the communication and decision
making components to share data and to communicate indirectly. This approach
allows both components to act in parallel and at a different pace, improving
efficiency and adaptability (see also the design rationale of the module decom-
position view of agent in section 3.2).

An alternative for the shared data style is a design where each component en-
capsulates its own state and provides interfaces through which other elements get
access to particular information. However, since a lot of state is shared between
the components of an agent (examples are the state that is derived from per-
ceiving the environment and the state of situated commitments), such a design
would increase dependencies among the components or imply the duplication of
state in different components. Furthermore, such duplicated state must be kept
synchronized among the components.

4.2 C & C Shared Data View Packet 2: Application Environment

Primary Presentation. The primary presentation is depicted in Fig. 6.

Elements and their Properties. The Application Environment consists of
various data accessors that are attached to two repositories: State and Laws. The
data accessors are runtime instances of the corresponding modules introduced
in section 3.3.

The State repository contains data that is shared between the components of the
application environment. Data stored in the state repository typically includes
an abstraction of the deployment context together with additional state related
to the application environment. Examples of state related to the deployment
context are a representation of the local topology of a network, and data derived
from a set of sensors. Examples of additional state are the representation of
digital pheromones that are deployed on top of a network, and virtual marks
situated on the map of the physical environment. The state repository may also
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Fig. 6. Shared data view of the application environment

include agent-specific data, such as the agents’ identities, the positions of the
agents, and tags used for coordination purposes.

To perform their functionalities, interaction, synchronization & data process-
ing, and observation & data processing can read and write state of the appli-
cation environment. Representation generator, communication mediation and
communication service, and low-level control only need to read state of the state
repository to perform their functionalities.

The Laws repository contains the various laws that are defined for the applica-
tion at hand. The laws repository is divided in three sub-repositories, one with
the perception laws, one with the action laws, and one with communication laws.
Each of these sub-repositories is attached to the component responsible for the
corresponding functionality.
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Interface Descriptions. Fig. 6 shows the interconnections between the state
repositories and the internal components of the application environment.

The state repository exposes two interfaces. The provided interface Read en-
ables attached components to read state of the repository. The Read-Write
interface enables the attached components to access and modify the application
environment’s state.

The laws repository exposes three interfaces to read the various types of laws:
Read-AL, Read-PL, and Read-CL. These provided interfaces enable the attached
components to consult the respective types of laws.

Variation Mechanisms. This view packet provides one variation mechanism:

SD2 Definition of State. The definition of state includes the definition of the
actual state of the application environment and the specification of the
state repository. The state definition has to comply to the ontology that
is defined for the application domain, see variation mechanism M3 in sec-
tion 3.1. The specification of the state repository includes various aspects
such as the specification of a policy for concurrency, specification of pos-
sible event mechanisms to signal data consumers, support for persistency
of data, and support for transactions. As for the definition of the current
knowledge repository of an agent, the concrete interpretation of these as-
pects depends on the specific requirements of the application domain at
hand.

SD3 Definition of Action Laws. Action laws impose application specific con-
straints on agents’ influences in the environment. An action law defines
restrictions on what kinds of manipulations agents can perform in the en-
vironment for a particular influence. The constraints imposed by an action
law can be defined relative to the actual state of the environment. For ex-
ample, when an agent injects a tuple in network, the distribution of the
tuple can be restricted based on the actual cost for the tuple to propagate
along the various links of the network.

SD4 Definition of Perception Laws. Perception laws impose application specific
constraints on agents’ perception of the environment. Every perception law
defines restrictions on what can be sensed from the current state of the en-
vironment for a particular focus. The constraints imposed by a perception
law can be defined relative to the actual state of the environment. For ex-
ample, restrictions on the observation of local nodes in a mobile network
can be defined as a function of the actual distance to the nodes in the
network.

SD5 Definition of Communication Laws. Communication laws impose applica-
tion specific constraints on agents’ communicative interactions in the en-
vironment. A communication law defines restrictions on the delivering of
messages. The constraints imposed by a communication law can be defined
relative to the actual state of the environment. For example, the delivering
of a broadcast message in a network can be restricted to addressees that
are located within a particular physical area around the sender.
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Design Rationale. The motivations for applying the shared data style in the
design of the application environment are similar as for the design of an agent.
The shared data style results in low coupling between the various elements,
improving modifiability and reuse.

The state repository enables the various components of the application envi-
ronment to share state and to communicate indirectly. This avoids duplication
of data and allows different components to act in parallel.

The laws repository encapsulates the various laws as first–class elements in
the agent system. This approach avoids that laws are scattered over different
components of the system. On the other hand, explicitly modelling laws may
induce a important computational overhead. If performance is a high-ranked
quality, laws may be hard coded in the various applicable modules.

5 Component and Connector Communicating Processes
View

The communicating processes view shows the multiagent system as a set of
concurrently executing units and their interactions. The elements of the com-
municating processes view are concurrent units, repositories, and connectors.
Concurrent units are an abstraction for more concrete software elements such as
task, process, and thread. Connectors enable data exchange between concurrent
units and control of concurrent units such as start, stop, synchronization, etc.
The relationship in this view is attachment that indicates which connectors are
connected to which concurrent units and repositories [13].

The communicating processes view explains which portions of the system
operate in parallel and is therefore an important artefact to understand how
the system works and to analyze the performance of the system. Furthermore,
the view is important to decide which components should be assigned to which
processes. Actually, we present the communicating processes view as a number
of core components and overlay them with a set of concurrently executing units
and their interactions.

The reference architecture provides one view packet of the component and
connector communicating view. This view packet shows the main processes in-
volved in perception, interaction, and communication in the situated multiagent
system.

5.1 C & C Communicating Processes View Packet 1: Perception,
Interaction, and Communication

Primary Presentation. The primary presentation is shown in Fig. 7.

Elements and their Properties. This view packet shows the main processes
and repositories of agent and the application environment. We make a distinction
between active processes that run autonomously, and reactive processes that are
triggered by other processes to perform a particular task.
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Fig. 7. Communicating processes view for perception, interaction, and communication

The discussion of the elements in this view packet is divided in four parts.
Successively, we zoom in on the communicating processes of perception, interac-
tion, and communication, and the synchronization processes of the application
environment.

Perception. The Perception Process of agent is a reactive process that can be
activated by the Decision Making Process and the Communication Process.
Once activated, the perception process requests the Representation Generator
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Process to generate a representation. The representation generator process
collects the required state from the State repository of the application environ-
ment, and optionally it requests the Observation Process to collect additional
data from the deployment context and possibly state of other nodes. State col-
lection is subject to the perception laws. The observation process returns the
observed data to the representation generator process, and subsequently the
representation generator integrates the perceived state and generates a repre-
sentation that is returned to the perception process of the agent. The perception
process converts the representation to a percept that it uses to update the agent’s
Current Knowledge. Finally, the requesting process can read the updated state
of the agent. The current knowledge repository can provide a notification mech-
anism to inform the decision making and communication process when a state
update is completed.

Interaction. The Decision Making Process is an active process of agent that
selects and invokes influences in the environment. The Interaction Process col-
lects the concurrently invoked influences and converts them into operations. The
execution of operations is subject to the action laws of the system. Operations
that attempt to modify state of the application environment are executed by the
interaction process, operations that attempt to modify state of the deployment
context are forwarded to the Low-Level Control Process. This latter process
converts the operations into low–level interactions in the deployment context.

Communication. The Communication Process is an active process that han-
dles the communicative interactions of the agent. Newly composed messages
are passed to the Communication Mediation Process that applies the com-
munication laws and subsequently passes the messages to the Communication
Service Process. This latter process converts the messages into low–level in-
teractions that are transmitted via the deployment context. Furthermore, the
Communication Service Process collects low–level messages from the deploy-
ment context, converts the messages into a format understandable for the agents,
and forward the messages to the communication mediation process that delivers
the messages to the communication process of the appropriate agent. Messages
directed to agents that are located at the same host are directly transferred to
the appropriate agents.

Synchronization Processes in the Application Environment. The Syn-
chronization Processes are active processes that (1) monitor application spe-
cific parts of the deployment context and keep the corresponding state of the
application environment up-to-date, (2) maintain application specific dynamics
in the application environment, and (3) synchronize state among nodes according
to the requirements of the application at hand.

Variation Mechanisms. There is one variation mechanism in this view packet.

CP1 State Synchronization. The parts of the deployment context for which a
representation has to be maintained in the application environment have to
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be defined. The deployment context may provide a notification mechanism
to inform synchronization processes about changes, or the processes may
poll the deployment context according to specific time schemes. Besides, for
each activity in the application environment that happens independently of
agents, an active process has to be defined. Finally, processes to synchronize
state among nodes must be defined. Appropriate middleware may be used
to support the synchronization of state among nodes.

Design Rationale. Agents are provided with two active processes, one for de-
cision making and one for communication. This approach allows these processes
to run in parallel, improving efficiency. Communication among the processes
happens indirectly via the current knowledge repository. The perception process
is reactive, the agent only senses the environment when required for decision
making and communicative interaction. As such, the perception process is only
activated when necessary.

The application environment is provided with separate processes to collect
and process perception requests, handle influences, and provide message trans-
fer. The observation process is reactive, it collects data from the deployment
context when requested by the representation generator. The low-level control
process is also reactive, it provides its services on command of the interaction
mediation process. The communication service is reactive process that handles
the transmission of messages when new messages arrives. Finally, synchroniza-
tion processes are active processes that act largely independent of other processes
in the system. Synchronization processes monitor particular dynamics in the de-
ployment context and keep the corresponding representations up-to-date in the
state of the application environment; they maintain dynamics in the application
environment that happen independent of agents, and synchronize state among
nodes.

Active processes represent loci of continuous activity in the system. By letting
active processes run in parallel, different activities in the system can be handled
concurrently, improving efficiency. Reactive processes, on the other hand, are
only activated and occupy resources when necessary.

6 Excerpt of a Software Architecture for an AGV
Transportation System

We now illustrate how we have used the reference architecture for the archi-
tectural design of an automated transportation system for warehouse logistics
that has been developed in a joint R&D project between the DistriNet research
group and Egemin, a manufacturer of automating logistics services in warehouses
and manufactories [45,2]. The transportation system uses automatic guided ve-
hicles (AGVs) to transport loads through a warehouse. Typical applications
include distributing incoming goods to various branches, and distributing man-
ufactured products to storage locations. AGVs are battery-powered vehicles that
can navigate through a warehouse following predefined paths on the factory floor.
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The low-level control of the AGVs in terms of sensors and actuators such as stay-
ing on track on a path, turning, and determining the current position is handled
by the AGV control software.

6.1 Multiagent System for the AGV Transportation System

In the project, we have applied a multiagent system approach for the develop-
ment of the transportation system. The transportation system consists of two
kinds of agents: transport agents and AGV agents. Transport agents represent
tasks that need to be handled by an AGV and are located at a transport base,
i.e. a stationary computer system. AGV agents are responsible for executing
transports and are located in mobile vehicles. The communication infrastructure
provides a wireless network that enables AGV agents at vehicles to communicate
with each other and with transport agents on the transport base.

AGVs are situated in a physical environment, however this environment is very
constrained: AGVs cannot manipulate the environment, except by picking and
dropping loads. This restricts how AGV agents can exploit their environment.
Therefore, a virtual environment was introduced for agents to inhabit. This vir-
tual environment provides an interaction mediation level that agents can use as
a medium to exchange information and coordinate their behavior. The virtual
environment is necessarily distributed over the AGVs and the transport base,
i.e. a local virtual environment is deployed on each AGV and the transport base.
The local virtual environment corresponds to the application environment in the
reference architecture. State on local virtual environments is merged opportunis-
tically, as the need arises. The synchronization of the state of neighboring local
virtual environments is supported by the ObjectPlaces middleware [29,30].

6.2 Collision Avoidance

As an illustration of the software architecture of the AGV transportation sys-
tem, we take a closer look at collision avoidance. AGV agents avoid collisions by
coordinating with other agents through the virtual environment. AGV agents
mark the path they are going to drive in their environment using hulls. The
hull of an AGV demarcates the physical area the AGV occupies in the virtual
environment. A series of hulls then describes the physical area an AGV occupies
along a certain path. If the area is not marked by other hulls (the AGVs own
hulls do not intersect with others), the AGV can move along and actually drive
over the reserved path. In case of a conflict, the virtual environment resolves the
conflict taking into account the priorities of the transported loads to determine
which AGV can move on. Afterwards, the AGV agent removes the markings in
the virtual environment. Fig. 8 shows the primary presentation of the communi-
cating processes view for collision avoidance. The communicating processes view
presents the basic layers of the AGV control system and overlay them with the
main processes and repositories involved in collision avoidance.

The top layer consists of the AGV agent that is responsible for controlling
an AGV vehicle. The main functionalities of an AGV agent are: (1) obtaining
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Fig. 8. Communicating processes for collision avoidance

transport tasks; (2) efficiently and safely handling jobs; (3) maintaining the AGV
machine (charging battery, calibrating etc.).

The middle layer consists of the local virtual environment that is responsible
for (1) representing and maintaining relevant state of the physical environment
and the AGV vehicle; (2) representing additional state for coordination purposes;
(3) synchronization of state with neighboring local virtual environments.

The bottom layer consists of the ObjectPlaces middleware and the E’nsor
software. The ObjectPlaces middleware enables communication with software
systems on other nodes, providing a means to synchronize the state of the local
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virtual environment with the state of local virtual environments on neighboring
nodes. E’nsor is the low-level control software of the AGV vehicle. The E’nsor
software provides an interface to command the AGV vehicle and to read out
its status. The E’nsor interface defines instructions to move the vehicle over a
particular distance and possibly execute an action at the end of the trajectory
such as picking up a load. The physical execution of the commands is managed
by E’nsor. As such, the AGV agent can control the movement and actions of the
AGV at a fairly high-level of abstraction.

We now discuss the main architectural elements involved in collision avoid-
ance in turn.

The Perception Process is part of the agent’s perception component, and
corresponds to the perception process in the reference architecture. If the per-
ception process receives a request for perception, it requests the up-to-date data
from the local virtual environment and updates the agent’s current knowledge.

The Perception Generator Process is part of the representation generator
and corresponds to the representation generator process in the reference archi-
tecture. This process is responsible for handling perception requests, it derives
the requested data from the state repository of the local virtual environment
according to the given foci. An observation & data processing process (as in the
the reference architecture) is absent in the local virtual environment. State from
the deployment context and other nodes that is needed by the AGV agent is
maintained by dedicated synchronization processes.

Collision Avoidance Process is part of the AGV agent’s decision making
component and is a helper process of the decision making process. The collision
avoidance process calculates the required hull projection for collision avoidance,
based on the most up-to-date data, and projects the hull in local virtual envi-
ronment. Once the hull is locked, the collision avoidance process invokes a move
command in the local virtual environment.

The Action Manager Process is part of the interaction component and cor-
responds to the interaction process in the reference architecture. The action
manager process collects the influences invoked in the local virtual environment
and dispatches them to the applicable processes. For a hull projection, the action
manager process passes the influence to the collision avoider process of the local
virtual environment. A move influence is passed to the E’nsor process.

Objectplaces repository is a repository of data objects in the ObjectPlaces
middleware that contains the hulls the AGV agent has requested.

NodeProperties is a data repository in the middleware in which relevant prop-
erties of the node are maintained, an example is the AGV’s current position.
Maintenance of node properties in the repository is handled by the Property
Maintainer Process. This process is a an instance of a synchronization pro-
cess of the local virtual environment. The data objects of the NodeProperties
repository are used by the middleware to synchronize the state among local vir-
tual environment on neighboring nodes. For example, the current position in the
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node properties repository is used by the ObjectPlaces middleware to determine
whether the AGV is within collision range of other AGVs.

The Collision Avoider is a helper process of the action manager process that
projects the requested hull in the objectplaces repository and initiates the colli-
sion avoidance protocol in the middleware.

The Protocol Interaction Process is a process of the ObjectPlaces middle-
ware that is responsible for executing the mutual exclusion protocol for collision
avoidance with the AGVs in collision range. This process maintains the state of
the agent’s hull in the objectplaces repository.

The Hull Maintainer Process and Position Maintainer Process are part
of the synchronization component. These processes are application-specific in-
stances of synchronization processes in the reference architecture. The hull main-
tainer process monitors the hull object in the objectplaces repository and keeps
the state of the hull in the state repository of the local virtual environment con-
sistent. The position maintainer process maintains in a similar way the actual
position of the AGV vehicle.

Finally, the E’nsor Process is part of E’nsor and corresponds to a low-level
control process in the reference architecture. The E’nsor process (1) periodically
provides updates of the vehicles physical state (such as position and battery sta-
tus), and (2) translates the high-level actions from the action manager process
into low-level commands for the vehicle actuators.

7 Related Work

In this section, we discuss a number of representative reference architectures and
reference models for multiagent systems.

7.1 PROSA: Reference Architecture for Manufacturing Systems

[49] defines a reference architecture as a set of coherent engineering and design
principles used in a specific domain. PROSA—i.e. an acronym for Product–
Resource–Order–Staff Architecture—defines a reference architecture for a family
of coordination and control application, with manufacturing systems as the main
domain. These systems are characterized by frequent changes and disturbances.
PROSA aims to provide the required flexibility to cope with these dynamics.

The PROSA reference architecture [11,36] is built around three types of basic
agents: resource agent, product agent, and order agent. A resource agent con-
tains a production resource of the manufacturing system, and an information
processing part that controls the resource. A product agent holds the know-how
to make a product with sufficient quality, it contains up-to-date information on
the product life cycle. Finally, an order agent represents a task in the manufac-
turing system, it is responsible for performing the assigned work correctly and
on time. The agents exchange knowledge about the system, including process
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knowledge (i.e. how to perform a certain process on a certain resource), produc-
tion knowledge (i.e. how to produce a certain product using certain resources),
and process execution knowledge (i.e. information and methods regarding the
progress of executing processes on resources). Staff agents are supplementary
agents that can assist the basic agents in performing their work. Staff agents al-
low to incorporate centralized services (e.g, a planner or a scheduler). However,
staff agents only give advice to basic agents, they do not introduce rigidity in
the system.

The PROSA reference architecture uses object-oriented concepts to model
the agents and their relationships. Aggregation is used to represent a cluster
of agents that in turn can represent an agent at a higher level of abstraction.
Specialization is used to differentiate between the different kinds of resource
agents, order agents, and product agents specific for the manufacturing system
at hand.

The target domain of PROSA is a sub-domain of the target domain of the
reference architecture for situated multiagent systems. As such, the PROSA
reference architecture is more specific and tuned to its target domain. The spec-
ification of the PROSA reference architecture is descriptive. PROSA specifies the
responsibilities of the various agent types in the system and their relationships,
but abstracts from the internals of the agents. As a result, the reference archi-
tecture is easy to understand. Yet, the informal specification allows for different
interpretations. An example is the use of object-oriented concepts to specify re-
lationships between agents. Although intuitive, in essence it is unclear what the
precise semantics is of notions such as “aggregation” and “specialization” for
agents. What are the constraints imposed by such a hierarchy with respect to
the behavior of agents as autonomous and adaptive entities? Without a rigorous
definition, such concepts inevitable leads to confusion and misunderstanding.

[21] presents an interesting extension of PROSA in which the environment
is exploited to obtain BDI (Believe, Desire, Intention [27]) functionality for the
various PROSA agents. To avoid the complexity of BDI-based models and the
accompanying computational load, the agents delegate the creation and main-
tenance of complex models of the environment and other agents to the environ-
ment. The approach introduces the concept of “delegate multiagent system”. A
delegate multiagent system consists of light-weight agents which can be issued
by the different PROSA agents. These ant-like agents can explore the environ-
ment, bring relevant information back to their responsible agent, and put the
intentions of the responsible agent as information in the environment. This al-
lows delegate multiagent systems of different agents to coordinate by aligning
or adapting the information in the environment according to their own tasks.
A similar idea was proposed by Bruecker in [10], and has recently further been
elaborated by Parunak and Brueckner, see [26]. The use of the environment
in the work of [21] is closely connected to our perspective on the role of the
environment as an exploitable design abstraction. The main challenge is now
to develop an architecture that integrates the BDI functionality provided by a
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delegate multiagent system with the architecture of the cognitive agent that
issues the delegate multiagent system in the environment.

7.2 Aspect-Oriented Agent Architecture

In [17], Garcia et al. observe that several agent concerns such as autonomy,
learning, and mobility crosscut each other and the basic functionality of the
agent. The authors state that existing approaches that apply well-known pat-
terns to structure agent architectures—an example is the layered architecture
of Kendall [22]—fail to cleanly separate the various concerns. This results in
architectures that are difficult to understand, reuse, and maintain. To cope with
the problem of crosscutting concerns, the authors propose an aspect-oriented
approach to structure agent architectures.

The authors make a distinction between basic concerns of agent architectures,
and additional concerns that are optional. Basic concerns are features that are
incorporated by all agent architectures and include knowledge, interaction, adap-
tation, and autonomy. Examples of additional concerns are mobility, learning,
and collaboration. An aspect-oriented agent architecture consists of a “kernel”
that encapsulates the core functionality of the agent (essentially the agent’s in-
ternal state), and a set of aspects [24]. Each aspect modularizes a particular
concern of the agent (basic and additional concerns). The architectural elements
of the aspect-oriented agent architecture provide two types of interfaces: regular
and crosscutting interfaces. A crosscutting interface specifies when and how an
architectural aspect affects other architectural elements. The authors claim that
the proposed approach provides a clean separation between the agent’s basic
functionality and the crosscutting agent properties. The resulting architecture
is easier to understand and maintain, and improves reuse.

State-of-the-art research in aspect-oriented software development is mainly
directed at the specification of aspects at the programming level, and this is
the same for the work of Garcia and his colleagues. The approach has been
developed bottom up, resulting in specifications of aspects at the architectural
level that mirror aspect-oriented implementation techniques. The notion of cross-
cutting interface is a typical example. Unfortunately, a precise semantics of
“when and how an architectural aspect affects other architectural elements” is
lacking.

The aspect-oriented agent architecture applies a different kind of modular-
ization as we did in the reference architecture for situated multiagent systems.
Whereas a situated agent in the reference architecture is decomposed in func-
tional building blocks, Garcia and his colleagues take another perspective on
the decomposition of agents. The main motivation for the aspect-oriented agent
architecture is to separate different concerns of agents aiming to improve under-
standability and maintenance. Yet, it is unclear whether the interaction of the
different concerns in the kernel (feature interaction [12]) will not lead to similar
problems the approach initially aimed to resolve. Anyway, crosscutting concerns
in multiagent systems are hardly explored and provide an interesting venue for
future research.
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7.3 Architectural Blueprint for Autonomic Computing

Autonomic Computing is an initiative started by IBM in 2001. Its ultimate aim
is to create self-managing computer systems to overcome their growing complex-
ity [23]. IBM has developed an architectural blueprint for autonomic comput-
ing [1]. This architectural blueprint specifies the fundamental concepts and the
architectural building blocks used to construct autonomic systems.

The blueprint architecture organizes an autonomic computing system into
five layers. The lowest layer contains the system components that are managed
by the autonomic system. System components can be any type of resource, a
server, a database, a network, etc. The next layer incorporates touchpoints,
i.e. standard manageability interfaces for accessing and controlling the man-
aged resources. Layer three constitutes of autonomic managers that provide the
core functionality for self-management. An autonomic manager is an agent-like
component that manages other software or hardware components using a con-
trol loop. The control loop of the autonomic manager includes functions to
monitor, analyze, plan and execute. Layer four contains autonomic managers
that compose other autonomic managers. These composition enables system-
wide autonomic capabilities. The top layer provides a common system manage-
ment interface that enables a system administrator to enter high-level policies
to specify the autonomic behavior of the system. The layers can obtain and
share knowledge via knowledge sources, such as a registry, a dictionary, and a
database.

We now briefly discuss the architecture of an autonomic manager, the most
elaborated part in the specification of the architectural blueprint. An autonomic
manager automates some management function according to the behavior de-
fined by a management interface. Self-managing capabilities are accomplished
by taking an appropriate action based on one or more situations that the auto-
nomic manager senses in the environment. Four architectural elements provide
this control loop: (1) the monitor function provides the mechanisms that collect,
aggregate, and filter data collected from a managed resource; (2) the analyze
function provides the mechanisms that correlate and model observed situations;
(3) the plan function provides the mechanisms that construct the actions needed
to achieve the objectives of the manager; and (4) the execute function provides
the mechanisms that control the execution of a plan with considerations for
dynamic updates. These four parts work together to provide the management
functions of the autonomic manager.

Although presented as architecture, to our opinion, the blueprint describes a
reference model. The discussion mainly focusses on functionality and relation-
ships between functional entities. The specification of the horizontal interaction
among autonomic managers is lacking in the model. Moreover, the functional-
ity for self-management must be completely provided by the autonomic man-
agers. Obviously, this results in complex internal structures and causes high
computational loads.
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The concept of application environment in the reference architecture for
situated multiagent systems provides an interesting opportunity to manage com-
plexity, yet, it is not part of the IBM blueprint. The application environment
could enable the coordination among autonomic managers and provide support-
ing services. Laws embedded in the application environment could provide a
means to impose rules on the autonomic system that go beyond individual au-
tonomic managers.

7.4 A Reference Model for Multiagent Systems

In [25], Modi et al. present a reference model for agent-based systems. The
aim of the model is fourfold: (1) to establish a taxonomy of concepts and defini-
tions needed to compare agent-based systems; (2) to identify functional elements
that are common in agent-based systems; (3) to capture data flow dependencies
among the functional elements; and (4) to specify assumptions and requirements
regarding the dependencies among the elements.

The model is derived from the results of a thorough study of existing agent-
based systems, including Cougaar [19], Jade [7], and Retsina [34]. The authors
used reverse engineering techniques to perform an analysis of the software sys-
tems. Static analysis was used to study the source code of the software, and
dynamic analysis to inspect the system during execution. Key functions identi-
fied are directory services, messaging, mobility, inter-operability services, etc.

Starting from this data a preliminary reference model was derived for agent-
based systems. The authors describe the reference model by means of a layered
view and a functional view. The layered view is comprised of agents and their
supporting framework and infrastructure which provide services and operating
context to the agents. The model defines framework, platform, and host layers,
which mediate between agents and the external environment. The functional
view presents a set of functional concepts of agent-based systems. Example func-
tionalities are administration (instantiate agents, allocate resources to agents,
terminate agents), security (prevent execution of undesirable actions by enti-
ties from within or outside the agent system), conflict management (facilitate
and enable the management of interdependencies between agents activities), and
messaging (enable information exchange between agents).

The reference model in an interesting effort towards maturing the domain.
In particular, the reference model aims to be generic but does not make any
recommendation about how to best engineer an agent-based system. Putting
the focus on abstractions helps to resolve confusion in the domain and facilitates
acquisition of agent technology in practice.

Yet, since the authors have investigated only systems in which agents commu-
nicate through message exchange, the resulting reference model is biased towards
this kind of agent systems. The concept of environment as a means for informa-
tion sharing and indirect coordination of agents is absent. On the other hand, it
is questionable whether developing one common reference model for the broad
family of agent-based system is desirable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Reference Architecture for Situated Multiagent Systems 37

8 Conclusions

In this paper, we presented a reference architecture for situated multiagent
systems. The general goal of the reference architecture is to support the ar-
chitectural design of self-managing applications. Concrete contributions are: (1)
the reference architecture defines how various mechanisms of adaptivity for sit-
uated multiagent systems are integrated in one architecture; (2) the reference
architecture provides a blueprint for architectural design, it facilitates deriving
new software architectures for systems that share its common base; and (3) the
reference architecture reifies the knowledge and expertise we have acquired in
our research, it offers a vehicle to study and learn the advanced perspective on
situated multiagent systems we have developed in our research.

We presented the reference architecture by means of three views that describe
the architecture from different perspectives. Views are presented as a number of
view packets. A view packet focusses on a particular part of the reference archi-
tecture. We gave a primary presentation of each view packet and we explained
the properties of the architectural elements. Besides, each view packet is provided
with a number of variation mechanisms and a design rationale. Variation mech-
anisms describe how the view packet can be applied to build concrete software
architectures. The design rationale explains the underlying design choices of the
view packet and the quality attributes associated with the various view packets.
[37] provides a detailed formal specification of the various architectural elements.

We illustrated how we have used the reference for the architectural design of
an AGV transportation system. In particular, we showed how a set of abstractly
defined processes in the reference architecture are instantiated to provide the
functionality for collision avoidance.

The reference architecture serves as a blueprint for developing concrete soft-
ware architectures. It integrates a set of architectural patterns architects can
draw from during architectural design. However, the reference architecture is
not a ready-made cookbook for architectural design. It offers a set of reusable
architectural solutions to build software architectures for concrete applications.
Yet, applying the reference architecture does not relieve the architect from diffi-
cult architectural issues, including the selection of supplementary architectural
approaches to deal with specific system requirements. We consider the reference
architecture as a guidance for architectural design that offers a reusable set of
architectural assets for building software architectures for concrete applications.
Yet, this set is not complete and needs to be complemented with additional
architectural approaches.
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31. W. Schols, T. Holvoet, N. Boucké, and D. Weyns. Gradient Field Based
Transport Assignment in AGV Systems. In CW-425, Technical Report. De-
partement of Computer Science, Katholieke Universiteit Leuven, Belgium.
http://www.cs.kuleuven.ac.be/publicaties/rapporten/CW/2005/.

32. E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. A Design Process for Adap-
tive Behavior of Situated Agents. In Agent-Oriented Software Engineering V, 5th
International Workshop, AOSE, New York, NY, USA, Lecture Notes in Computer
Science, Vol. 3382. Springer, 2004.

33. E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. Designing Roles for Situated
Agents. In 5th International Workshop on Agent-Oriented Software Engineering,
New York, NY, USA, 2004.

34. K. Sycara, M. Paolucci, M. Van Velsen, and J. Giampapa. The RETSINA MAS
Infrastructure. Autonomous Agents and Multi-Agent Systems, 7(1-2):29–48, 2003.

35. B. Tekinerdogan. ASAAM: Aspectual Software Architecture Analysis Method. In
4th Working Conference on Software Architecture, WICSA, Oslo, Norway. IEEE
Computer Society, 2004.

36. P. Valckenaers and H. Van Brussel. Holonic Manufacturing Execution Systems.
CIRP Annals-Manufacturing Technology, 54(1):427–432, 2005.

37. D. Weyns. An Architecture-Centric Approach for Software Engineering with Sit-
uated Multiagent Systems. Ph.D Dissertation: Katholieke Universiteit Leuven,
2006.
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Abstract. The AGRE model proposed by Ferber et al. is based on an interest-
ing generalization of both physical and social environments. In this paper we
revisit the AGRE model and extend it with richer social concepts such as powers,
norms and a dependency relationship which is similar to the count as operator
introduced by Searle to describe the construction of social reality. Our main con-
tribution consists in the fact that we attribute to the environment the main role in
describing and controlling (social) interaction.

1 Introduction

In the area of multi-agent systems (MAS), Castelfranchi claimed [1] that social order,
which is a (social) metaphor for the problem of coordinating the agents or organizing
the interactions among them while preserving their autonomy, could be obtained by
using social concepts such as norms and social control. Norms are rules describing the
expected ideal behavior of an agent or of a group of agents. Social control means that the
agents themselves observe the behavior of the other agents, control if it is norm compli-
ant and act consequently. Recently, many research works [2,3,4,5] proposed models that
integrate social and organizational concepts in MAS and suggested tools to implement
the social metaphor. However, most of them propose ad-hoc solutions of how social
concepts are constructed and then manipulated. For instance, there is not always very
clear if the social knowledge (e.g. the obligation to do an action, the power of doing
an act, the membership to an institution, etc.) is shared among agents or is represented
somehow externally and independently of them.

In previous works we also have studied how to integrate in MAS the organizational
concepts of group and role [6] and proposed the AGRE model [7]. The AGRE model is
based on the idea that the environment could be used to represent not only the physical
part of the interaction but also its social aspect. The agents interact only with the envi-
ronment which will react according to agent’s influences [8] and to the rules of change
defined at both physical and social levels of interaction.

In this paper we present the AGREEN model which is a revisited extension of the
AGRE model. Our main goal is to provide a much simpler and unified way of represent-
ing (physical and social) environments. The originality of our proposal consists in the
fact that it attributes to the environment the main role in describing and controlling (so-
cial) interaction. This is the major difference when compared with other related works
that use social concepts [3,4,9].
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The AGREEN model is based on a clear separation between what an agent tries to do
and the effects obtained as consequences of its acts on the environment. The architect of
an agent concentrates only on describing the internal structure of the agent, that is, on
the design of the decision making mechanism that allows the agent to decide what to do
next. The architect of the system describes the environment as a set of rules governing
the interaction, ignoring how the agents are built. The main benefit of this separation
is that it guarantees the autonomy of the agents and the non-intrusive control of their
behavior. The non-intrusive control is based also on a clear distinction between what an
agent can do, as capabilities (or powers), and what an agent is supposed to do as deontic
constraints (i.e. obligations, permissions, interdictions).

Another advantage obtained from the separation agent/environment is that the se-
mantics of an action could be given according to two perspectives: internal (agent’s
point of view) and external (environment’s point of view). The external semantics could
be further refined according to its social or physical aspect. This is a step forward to-
wards giving to agent communication languages a public perspective and a social se-
mantics, as requested by the agent community [10].

In the rest of the article we revisit the AGRE model and propose the AGREEN model
that enhances AGRE with social concepts such as capabilities (powers), norms and a
dependency relationship which is similar to the count as operator introduced by Searle
to describe the construction of social reality [11].

2 Social Reality and AGRE

In this section we describe some social concepts such as norms and social reality that
were announced in the original paper of AGRE but which deserve more attention.

2.1 Social Reality

The work of Searle on the construction of social reality [11] is becoming very influ-
encing on the research in agent based systems [2,3]. The main idea is that a social
institution, even that it has no physical support, has its own (social) reality and is con-
structed by mutual convention among its members on how to interpret what happens in
the physical reality. Searle makes the distinction between brute facts and institutional
facts. A brute fact represents something (true) bellonging to the physical reality (i.e. a
piece of paper with a ten euros sign marked on it). An institutional fact is a fact that is
considered to be true by collective acceptance by the members of a group or comunity
of agents (i.e. money such as ten euros). According to Searle an institution is defined
in terms of two types of rules: constitutive and regulative. Constitutive rules show how
to construct the social reality by giving an interpretation to brute facts or other social
facts. They have the form "X counts as Y in context C". For instance, in the money
institution a piece of paper with ten euros special printings on it counts as a ten-euro
banknote. Jones and Sergot [2] give a formalization of count as, and present the con-
cept of institutionalized power as being the (social) capability to act in an institution.
Regulative rules describe ideal normative situations or behaviors from the point of view
of an institution.
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2.2 The AGRE Model

In [7], Ferber et al. propose an extension of the AGR model [6] and consider an orga-
nization as being a special kind of environment. Social actions are associated with an
organization, i.e. playing a role, entering and leaving a group, communicating inside
a group, etc. The main ideas presented in that work concern (i) the use of both social
and physical environments to describe the interaction among agents; (ii) the concept
of space which is a generalization of the concepts of physical area and social group,
introduced to partition the environment; and (iii) the concept of mode, which is a gen-
eralization of the concepts of physical body and social role, used to describe the agent’s
capabilities to influence [8] physical and respectively social environments.

However, the AGRE model presents some inconveniences. First, the generalized con-
cepts of space, mode and institution show very well the relationship that should exist
between an agent and an environment, but they remain abstract and unused. Moreover,
like in AGR, there is no explicit description of the expected behavior of the agents,
i.e. a role is simply a label with no other semantics. Normally we should be able to
associate to a role powers and deontic constraints such as obligations, permissions or
interdictions. Finally, AGRE in its original form did not take into account the ideas on
social reality by Searle. What is missing in AGRE is something similar to the count as
relationship that links together physical and social environments or more generally any
two environments.

3 The AGREEN Model

In this section we show how to improve and generalize the concepts introduced initially
in AGRE. That is, we propose: (i) to use only the generalized concepts of space, mode
and capability, (ii) to better explain the role of the environment from the point of view of
behavior control, (iii) to give more details on the role of modes as capabilities to act in
an environment, and (iv) to try to generalize the relationship existing between physical
and social environments.

In Figure 1 we give a simplified description of the main relationships existing be-
tween a space, a mode and an agent. In order to interact to other agents an agent will
influence a space through its mode which provides controlled capabilities to act in an
environment. According to what an agent is able to do in a space the environment will
react to its influences. The reaction of the environment is finally the result of a more
complex interaction between various objects which have the role to encapsulate the
environment’s state and behavior.

3.1 Spaces

As in AGRE, we borrow concepts from the object-oriented programming paradigm to
specify an environment. The role of a space is to keep the information about the state
of a physical or social environment. A space is for agents a sort of interaction place.
Its state can change as a consequence of their influences. A space is characterized by a
name and a space type as as explained below. The state of a space is given by the state
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Fig. 1. Simplified UML representation of AGREEN

of the objects that compose it. The kinds of objects composing a space could be further
divided in ordinary objects, modes and recursively other subspaces. In the following we
will give definitions for all these concepts.

Definition 1 (Space). A space S is a tuple <IdS , ST , O∗, M∗, S∗> where: IdS is
the space’s Id that uniquely identifies it, ST is the current space type, and O∗, M∗, S∗

represent the sets of objects, modes and respectively subspaces that compose a space.

The type of a space is a concept similar to that of class in the object-oriented paradigm
and contains the description of common properties and behaviors of identical instances,
i.e. concrete spaces. A space type defines the structure of its instances, i.e. the way a
space instance is composed of objects, modes, and other subspaces.

Definition 2 (SpaceType). A space type ST is a tuple <ATD∗
S, OT ∗, MT ∗, ST ∗,

DR∗, C∗
S> where ATD∗

S represents the set of attributes composing a space. An at-
tribute could be an instance of a type taken from the sets OT ∗, MT ∗ and ST ∗ which
correspond to object types, mode types and respectively other space types. DR∗ repre-
sents the set of explicit dependency rules that link an instance of ST to other spaces,
and C∗

S is the set of environmental constraints for the environmental control.

The set DR∗ contains rules that determine how a space modifies its internal state ac-
cording to some external changes produced by other spaces. A dependency rule between
two spaces introduces constraints of various natures: causal (an internal event is the re-
sult of some external causes or events occurred in other spaces), logical (a local property
is the logical consequence of some external properties), social (like count as). Note, for
instance, that physical spaces have no social dependency rules.

3.2 Objects

Objects encapsulate the internal state of the environment and the laws that govern its
change. An object exists at runtime and is characterized by a type and a state.

Definition 3 (Object). An object O is a tuple <IdO , OT , AT ∗
O> where: IdO is the

object’s name that uniquely identifies it; OT is the object type; and AT ∗
O is the set of

attributes of the object.
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The type of object is similar to the class in object-oriented programming and contains
the description of common properties and behaviors of identical instances, that is con-
crete objects. An object type describes the possible states of its instances and how they
change under agents’ influences.

Definition 4 (ObjectType). An object type OT is a tuple <ATD∗
O, M∗> where

ATD∗
O is the set of attribute declarations and M∗ is the set of methods defining how

an object, instance of OT , changes its internal state.

3.3 Modes

There are mainly two reasons to introduce the concept of mode: (i) to allow a space to
individually attribute capabilities to agents; (ii) to allow a space to specify the expected
behavior by using social deontic constraints. We propose to use the term capability to
describe the unified concept of physical capability and social power. A capability is
associated to a mode and a space, and defines the way an agent (called owner of the
mode) is able to modify the space at runtime. A mode is characterized by a mode type
and a set of attributes.

Definition 5 (Mode). A mode M is a tuple <IdM , MT , A, AT ∗
M , OPI∗> where:

IdM is the mode’s name that uniquely identifies it, MT is the mode type, A is the
owner’s (agent) identifier, AT ∗

M is a set of attributes, and OPI∗ is a set of deontic
constraints such as obligations, permissions and interdictions.

Definition 6 (ModeType). A mode type MT is a tuple <ATD∗
M , P ∗, C∗

M , N∗>
where: ATD∗

M is the set of attribute declarations, P ∗ is the set of capabilities (or
powers) that an instance of MT will offer to its owner, C∗

M is a set of conditions that
should be fulfilled by an agent to obtain a mode in a space or to release it, and N∗ is a
set of norms that describe the conditions of apparition of deontic constraints that apply
to a mode, instance of MT .

The type of mode is similar to the class in object-oriented programming. It is an abstract
description of the internal structure of its instances, the modes, and of the operations
that could be executed on them to change their state. Since the notion of type is similar
to that of class, we also introduce the concept of inheritance between two types. As
in object-oriented software engineering, the inheritance is used to represent the is-a
relationship or to reuse code.

In the definition of a mode type, the set C∗
M contains the conditions that should be

verified on an agent at the creation of its mode or rechecked later to see if the agent still
posses the necessary conditions to continue to interact with the environment.

The role of capability rules is to define what is possible for an agent to do in a space.
When an agent influences the environment, the capability rule triggered by its mode is
immediately executed by the environment. A capability rule also contains the precon-
ditions on producing an influence on the environment. As shown before, a mode encap-
sulates the conditions that gives its owner the possibility to act in an environment. The
capability rules are mainly employed to externally control the behavior of the agents
inside a space through their modes, hence preserving their internal autonomy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



46 J.-A. Báez-Barranco, T. Stratulat, and J. Ferber

The role of norms is to implement the social control since they reflect the deontic
aspect of interaction. They are of the following conditional form:

if Condition then OPI(agent, α)

where OPI(agent, α) describes deontic constraints such as the obligation, the permis-
sion or respectively the interdiction to do something or to arrive in a certain state of
affairs α. If the Condition part in a norm is true, the norm describes a permanent
deontic constraint. We note that we do not consider general deontic constraints as in
standard deontic logic, but directed deontic constraints on specific agents. Like capabil-
ities, a deontic constraint is always connected to a mode.

As shown in the previous section, we only consider the context of social interactions.
For instance, a physical mode (e.g. a body), is only a mode with an empty set of norms.

A norm could be used in various ways, for instance, as a simple container of nor-
mative information, eventually sanctioned by social penalties if violated and rewarded
otherwise, or "regimented" by social mechanisms that force or block the execution of
agent’s actions in a space thanks to its modes. Since there is no common agreement on
how to use norms in multi-agent systems, we leave open to an architect the choice of
semantics and their implementation.

4 Example: Modeling Warbot

In this section we illustrate the concepts introduced in AGREEN by modeling Warbot
[12], a video game where two teams of robots fight against each other to destroy the
opponent’s base.

In Warbot there are three physical types of robots:

– Bases, fixed robots which are able to perceive large areas and transform food in
new agents,

– RocketLaunchers, mobile robots that have to bring food to the base and which
are able to shoot other robots perceived in their neighborhood,

– Explorers, mobile robots specialized in searching for food but which move faster
than RocketLaunchers.

Warbot is constructed following the idea of separating the minds of the agents from
their bodies which are situated in an environment. That is, we consider that behind
each robot there is an autonomous agent which decides for the robot what to do next.
The environment (or the spaces) offers the agents the capabilities to interact. Thus, the
interaction could be divided in four spaces: arena which is used for the physical part
of the game, lions and tigers which correspond to the organizational aspect of the
game, and game777 which contains the score and the entire lifecycle of one play of
the game. More exactly, the agents use robots to confront physically in arena space,
coordinate their attacks in lions and tigers spaces, and play one round Warbot games
in gameXXX spaces. A game play is finished if one of the bases has been destroyed
in the arena space.
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Fig. 2. Warbot, a robot video game

The space arena is defined as a two-dimensional physical space allowing physical
robots to move, shoot, communicate in a certain range and pick up food. The space
arena is an instance of WarbotArena, a space type which contains the definitions
(see Figure 3 for some excerpts) of object types such as Food, Obstacle and Missile,
and mode types such as Robot, MobileRobot, RocketLauncher, Explorer, Base.
The Robot type is the super type of all the robot types and defines the capability of
a robot to perceive and communicate in a certain range; MobileRobot inherits from
Robot and adds the capability to move. Both RocketLauncher and Explorer inherit
from MobileRobot. Base inherits directly from Robot and adds the capability to create
new robots from food.

The spaces lions and tigers are spaces for social interaction between the members
of the same team. Each team can have its own organizational structure and coordination
rules, but for simplicity reasons we suppose that both teams are instances of the same
space type Team. For instance, we can have that Team is composed by one Leader
and many Subordinates. All the modes in a space instance of Team have the capa-
bility to communicate. The Leader of a team contains in addition the capability (power)
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SpaceType WarbotArena {
ModeTypes = {

ModeType Robot = {
Attributes = {

int radius = 12;
int energy = 1000;
int detectionRange = 130;

}
Capabilities = {

int getEnergy() {...}
}
Conditions = {

boolean onDemand() {...};
boolean onRelease() {...};
...

}
}
ModeType MobileRobot extends Robot

{
Attributes = {int speed;}
Capabilities = {

void move () {...};
}
...

}
}
ObjectTypes = {

ObjectType Food {...}
ObjectType Obstacle {

int x, y;
int getX(); int getY();

}
}

SpaceType Team {
ModeTypes = {

ModeType Leader {
Capabilities = {

void order(Subordinate ag,
Request r) {...}

boolean onDemand() {
return plays(this.owner,

MobileRobot,
WarbotArena) &&
leader == null;

}
}

}
ModeType Subordinate { ...

Norms = { {
if ordered(Leader l, this,

act)
then obliged(this, act, l)},

...
}

SpaceType WarbotPlay {
ModeTypes = {

ModeType Player { ...
Norms = { {

forbidden (this, nextTo(this,
base, 10)) }

...
Dependencies = {

{ WarbotArena,
// count as
boolean nextTo(Player p, Base b,

int time) {...}
}

}
}

Fig. 3. Types definitions for spaces, modes and objects

to give orders to a Subordinate. When a Subordinate receives an order it becomes
obliged to obey the order. This rule is described by a norm defined in Subordinate
mode type. Depending on the strategy of a team, the violation of such a norm could
trigger various institutional actions, for instance, that affect the agent’s trust level or
socially isolate the agent from the rest of the team.

The space game777 is an instance of WarbotP lay, a space type that defines the
rules of the game. It contains, for instance, the conditions to start, pause or end a
game, the conditions of a team to score one point or win a game, the penalties at-
tributed to a team if some of its members don’t obey the normative rules, such as a
Player in a team should not stay next to a base more than a certain period of time. The
constitutive rules of WarbotP lay depend mainly on what happens in an instance of
WarbotArena.

In Figure 4 we show some possible content of a space at runtime.
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arena = {
id = arena,
spaceType = WarbotArena,
subspaces = {},
modes = {

{ id = base1,
type = BaseRobot,
owner = agbaseA,
attributes = {radius = 20, energy

= 2000, ...},
deontic constraints = {},

},
{ id = explorer1,
type = Explorer,
owner = rob33,
attributes = {..., x = 10, y =

23, speed = 20, ...},
deontic constraints = {}

},
...

},
objects = {

{ id = ob1,
type = Obstacle,
attributes = {x = 20, y = 30}},

},
...

}
}

lions = {
id = lions,
spaceType = Team,
subspaces = {},
modes = {

{ id = boss,
type = Leader,
owner = ag332,
attributes = {ordered(ex1,

returnHome)},
deontic constraints = {},

},
{ id = ex1,
type = Explorer,
owner = rob33,
attributes = {...},
deontic constraints = {obliged(

returnHome, boss)}
},
...

},
objects = {...}

}

Fig. 4. Spaces at execution time

5 Conclusions

The AGREEN model described in this paper is a revisited extension of the AGRE
model. Its main goal is to provide a much simpler and unified way of representing
(physical and social) environments. The model is based on: (i) a clear separation be-
tween what an agent tries to do and the effects obtained as independent consequences
of its acts on the environments and (ii) a clear distinction between what an agent can
do, as capabilities, and what an agent is supposed to do, as deontic constraints.

Another message of this article is that, the institution, defined by Searle as a set of
constitutive rules of the form "X counts as Y in context C", is a concept general enough
to expressively describe mediated interaction and environment-based coordination. In
AGREEN, the space and its type, taken together, should be seen as the basic institu-
tional unit. A space represents that part of the social reality constructed according to the
(constitutive) rules defined by its type. A space type actually corresponds to the context
C in Searle’s terminology or to S in Jones and Sergot’s formalization of count as oper-
ator (e.g. X ⇒S Y ). It regroups all the constitutive rules relative to the same context C.
When modeling the interaction, the expressive power of institutional concepts comes
from the fact that we can divide the whole space of interactions in smaller parts and
consider them separately, in isolation or connected to others.

The unified institutional model proposed in this article, allows someone to uni-
formly describe various types of interaction. The difference between physical and social
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interaction is that in the case of a physical space we don’t have to specify deontic
constraints and social dependency relationships. We note, however, that the social de-
pendency relationship, which is similar to the count as operator, and the more general
notion of dependency between any two spaces deserve both more attention and formal
definitions. This will be subject of our future work.
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Abstract. One large and quite interesting family of MAS applications
is characterized (1) by their large scale in terms of number of agents
and physical distribution, (2) by their very dynamic nature and (3) by
their complex functional and non-functional requirements. This family
includes a.o. manufacturing control, traffic control and web service coor-
dination. BDI-based agent architectures have proven their usefulness in
building MASs for complex systems - their explicit attention for coping
with dynamic environments is one obvious explanation for this. For the
family of applications mentioned above, the complexity of the software
for the individual agents using traditional BDI-approaches, however, is
overwhelming.

In this paper, we present an innovative approach to BDI agents which
alleviates agent complexity through so-called “delegate MASs”, which
use the environment and its resources to obtain BDI functionality. Del-
egate MASs consist of light-weight agents, which are issued either by
resources for building and maintaining information on the environment,
or by task agents in order to explore the options on behalf of the agents
and to coordinate their intentions. We describe the approach, and vali-
date it in a case study of manufacturing control. The evaluation in this
case study shows the feasibility of the approach in coping with the large
scale of the application and shows that the approach elegantly achieves
flexibility in highly dynamic environments.

1 Introduction

The term “coordination and control applications” can be coined to refer to a
large family of application which share a number of characteristics. First, in the
applications, one can distinguish (1) an underlying physical or software envi-
ronment, and (2) a software system that is connected to this environment. The
underlying environment contains fixed entities or “resources” capable of per-
forming particular operations, as well as mobile entities which can move in the
environment. Second, the coordination and control software system is able to ob-
serve and direct the entities in the underlying environment. Third, the purpose of
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the application is to execute “tasks”. Executing a task requires moving through
the environment and performing operations by using resources. The purpose of
the software system is to manage the underlying environment by controlling en-
tities that live in the environment, and coordinating the collective behavior of
these entities. Fourth, the underlying system evolves several orders of magni-
tude slower than the coordination and control software. This allows the software
to observe the environment and to plan ahead. Fifth, the environment itself is
highly dynamic. Resources may crash, new resources may be added, connections
between resources may be added, lost, or their characteristics (e.g. throughput,
speed) may change. Members of this family of coordination and control applica-
tions include manufacturing control, traffic control and web service coordination,
but also supply chain management and multi-modal logistics. As an example,
in manufacturing control, the environment is the physical world equipped with
resources such as machines and conveyor belts, and the tasks are the client or-
ders for fabricating particular products. The software in manufacturing control
is responsible for controlling the resources and for guiding the orders through
the factory floor.

Centralistic software approaches tend to break when the underlying system is
large scale in terms of physical distribution and number of entities. Based on the
characteristics and requirements described above, a decentralized, multi-agent
system approach is suitable for modeling and developing the software for these
applications. Both the mobile entities (partially fabricated products, vehicles,
client software) and the fixed entities or resources in the environment (machines
or conveyor belts, roads and intersections, web services) are obvious candidates
to be represented as agents - which we call task agents and resource agents
respectively.

Research related to BDI-approaches [1,11] is particularly interesting and broad
- we refer to just of few related topics here [12,8,6,2,3]. Building a realistic BDI
agent involves many aspects, including - but not limited to:

– knowledge engineering information (beliefs) must be gathered from the
environment and from the task and resources agents, and must be kept up-
to-date according to some policy;

– deliberation based on the world model, the agent needs to decide what
state of affairs it will intend to bring about;

– means-ends reasoning either through on-line planning or using plan li-
braries, a plan is devised to reach the intention;

– direct communication for many aspects, distributed communication pro-
tocols are necessary - most notably for coordinating the behavior of the task
agents, but also to inform resources of agent intentions, exchange state with
other task agents, and so on;

– advanced concepts including joint plans, joint intentions, learning may be
quite useful.

Experience with BDI-agents in small-scale and toy applications, as discussed in a
lot of literature contributions for over ten years, yield agents which were concep-
tually clean, yet these agents quickly become quite complex. For the application
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domains in coordination and control for large-scale systems in highly dynamic
environments, the complexity of BDI-based models of agents and the expected
computational effort is simply overwhelming.

Partially inspired by the recent trend to exploit the environment as a design
abstraction for managing complexity in MAS [14], we propose a particular BDI-
based approach that aims to avoid most of the internal agent complexity. Rather
than creating and maintaining complex world and agent models themselves, the
agents delegate this to the environment. In the approach, we introduce the con-
cept of “delegate MASs” which are issued by the different agents. Delegate MASs
consist of light-weight agents which perform particular activities on behalf of a
task or resource agent. These light-weight agents can explore the environment
and bring relevant information back to their responsible task agent, can evaluate
optional paths, and can put the intentions of their task agent as information in
the environment. This allows delegate MASs of different agents to coordinate by
aligning or adapting the information in the environment according to their own
tasks.

This paper is structured as follows. Section 2 describes the basic software
architecture of our approach, which consists of task and resource agents and
their environment. In Sect. 3, we refine this architecture by proposing how the
agents deal with beliefs, desires and intentions through delegate MASs. As the
contribution of this paper is on the approach rather than on the application
domains, we restrict the examples and illustrations to manufacturing control. A
concrete case study in manufacturing control is described in Sect. 4. Section 5
makes an evaluation and concluding remarks on the proposal, and points out
directions for future work.

2 Basic Software Architecture for Coordination and
Control Applications

We describe the basic components in the software architecture of our approach,
i.e. task agents, resource agents, and the environment.

The environment. The environment of the targeted applications is a dynamic di-
rected graph. The nodes in the graph represent the resources in the environment
and the edges represent connections between different resources. The environ-
ment contains the mobile entities and allows these entities to move from resource
to resource. A mobile entity that resides on a node in the graph can communicate
with the resource on this node. When a mobile entity is on a particular node, the
corresponding resource can perform an action on the task of this mobile entity.

The lower part of Fig. 1 shows an example of a simple factory of six resources,
connected through unidirectional “left-to-right” connections.

Resource Agents. A resource agent represents a resource in the environment
and contains an information processing part for controlling the resource. The
resource agent lives in a virtual world that represents the underlying system,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



54 T. Holvoet and P. Valckenaers

Fig. 1. A simple factory consisting of six resources, which are connected left to right

but which allows bidirectional communication for each connection (see upper
part of Fig. 1). The resource itself offers processing capacity and functionality
to the resource agent. In manufacturing control systems, a resource agent is an
abstraction of the production means such as machines, conveyors, tool holders,
material storage or even personnel.

A resource can abstractly be described as a set of capabilities. A capability
specifies the operations that the resource is able to perform.

Resource agents need to be able to make schedules based on requests from task
agents. Resource agents must also be able to answer “what-if questions”: a task
agent may ask a resource agent when and according to what quality standards
a particular operation could be performed if the task would arrive at a future
time. This allows task agents to evaluate the total time to completion and the
expected quality of the finished task for a particular plan.

Task agents. A task agent represents and controls a task in the coordination and
control application, and resides on a (physical or virtual) mobile entity in the en-
vironment. A task agent is responsible for performing its task by guiding its mo-
bile unit through the environment, and communicating with resource agents in
order to perform operations on the unit. A task has to be performed correctly and
in time. Every task agent is aware of the goal of its task, and has available the
schemes or plans that can be followed in order to reach this goal. For manufac-
turing control, the task agents represent (unfinished) client orders and are associ-
ated with the pallets with partially fabricated products. The production schemes
describe possible sequences of operations on the product in order to obtain the
final product. A task agent may represent customer orders, make-to-stock orders,
prototype-making orders, orders to maintain and repair resources, etc.

Task agents are obvious candidates to be modeled as BDI agents. Task agents
need to deal with the observations of the environment and its entities (be-
liefs), consider possible options on how to proceed (desires), choose a particular
option (intention) and communicate this with the other task agents. This al-
lows the agents to coordinate their behavior by accommodating their intentions.
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Coordination is necessary as actions of one task agent may obviously influence
the situation of the other task agents. If the situation in the environment is
such that another option becomes substantially more favorable, the agent can
reconsider and adopt a new intention.

Agent Interactions. Both resource and task agents control the entities in the en-
vironment, and obviously need to interact to achieve the goal of the application.
A typical interaction amongst these agents goes as follows.

When a new “task” enters the system, a task agent is created and connected
to the appropriate unit. The agent is aware of the initial state of the task and
investigates possible next operations that can be performed. The agent searches
and selects a combination of a next processing step and a suitable resource that
has the capability to execute the step.

When the selected processing step is executed by the resource, the resource
reports on the new state of the task. This may or may not be the expected
outcome of the operation. Based on this state, the task agent investigates possible
next steps based on the task schemes, and selects a combination of a processing
step and a suitable resource again. This process is repeated until the task is
finished.

3 Delegate Multi-Agent Systems for BDI Through the
Environment

In the previous section, we identified the core abstractions and concepts for
modeling a coordination and control application as a multi-agent system. In this
section, we describe the functionality that is required for the task agents to be
able to achieve their goals, and explain how we achieve this functionality through
delegate MASs.

3.1 Required Functionality

Make feasibility information available. As routing tasks through the environ-
ment is an essential feature in coordination and control applications, the envi-
ronment must provide a means to inspect feasible paths. A feasible path describes
a sequences of resources that can be reached by following this path. Feasibility
information reflects physical or topological constraints in the environment. If
there is a path from one node H to a destination node D via node V, this must
be observable as a feasible path.

Task agents need to explore relevant paths. Task agents need to explore the
feasible paths that correspond to their task schemes. A feasible path corresponds
to a task scheme if following this path routes the task agent along the resources
that are necessary to reach its final goal. A task agent needs to consider all
possible schemes (i.e. sequences of operations) which can bring the current task
toward its goal, and match these plans with the feasibility information. The
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feasible paths that match a suitable scheme represent the different options that
the task agent has to achieve its goal.

Exploring a path means to evaluate the path in a “what-if mode” in order to
judge timing and quality if this path would be followed by the task agent.

Intentions. Based on the options that are available to a task agent and their
evaluation in a what-if mode, the task agent chooses one path as its intention.
Adopting an intention obviously has implications on the resource agents that
will be visited as part of the intention. The task agent needs to communicate
with those resource agents and inform them of when they will arrive and which
operation the resource will need to perform. The resource agents need to book
these reservations.

3.2 How: Delegate MASs

A typical approach would be to use direct communication protocols, knowledge
engineering and means-ends reasoning to achieve this functionality. Here, we use
delegate MASs for obtaining feasibility information, exploration and propagation
of intentions toward the resource agents. To some degree, delegate MASs are in-
spired by food foraging in ant colonies. Food foraging ants execute a simple pro-
cedure. In absence of any signs in the environment, ants walk around randomly
in search for food. When an ant discovers a food source, it drops a smelling sub-
stance - a pheromone - on its way back to the nest while carrying some of the food.
This pheromone trail evaporates over time, and disappears if no other ant deposits
fresh pheromone. Another ant in search for food will use pheromones in the envi-
ronment as a source of information to direct its own behavior. Pheromones indi-
cate possible routes to a food source, ants are urged by instinct to follow this trail
to the food source. When the ant finds the food source, it will return with food,
while depositing pheromone itself. When the ant discovers that the food source is
exhausted, it starts a randomised search for food again. As the pheromone trail is
no longer maintained, it disappears over time.

These simple behavior patterns result in an emergent behavior of the ant
colony that is highly ordered and effective at foraging food while being robust
against the uncertainty and the complexity of the environment. An important
capability of this type of collective behavior is illustrated: global information -
about where to find food in a remote location - is made available locally - in
which direction must the ant move to get to this food. The following interesting
principles are recognized: (1) make the environment part of the solution to handle
a complex environment without being exposed to its complexity - ants are quite
simple agents; (2) place relevant information as signs in the environment ensuring
that locally available data informs about remote system properties; (3) limit the
lifetime of this information (evaporation) and refresh the information as long as
it remains valid - this allows the system to cope with changes and disturbances.

We exploit these principles in our approach and define three types of light-
weight agents, which each represent a different delegate MAS and which share
a common environment for indirect communication. To distinguish them from
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task and resource agents, we call the light-weight agents “ant agents” or ants
further on. Delegate MASs consist of ant agents that reside in a virtual software
environment which reflects the application environment, and in which ant agents
can navigate. The responsibilities of the delegate MASs are restricted in that they
are managed by the basic agents. Individual ant agents have a particular activity
to perform autonomously, yet which information they distributem or how the
information they gather is used, is the responsibility of the issuing basic agent.

Feasibility Ants. Feasibility ants form a delegate MAS that is issued by resource
agents. Their purpose is to roam the environment and, at each node they pass,
drop information on feasible paths that start from this node.

Resource agents which have not seen a feasibility ant passing by for a par-
ticular period will create new feasibility ants themselves at a certain frequency.
The behavior of a feasibility ant is as follows.

A feasibility ant communicates with the resource agent at its current node,
and asks for its capabilities. The ant observes the environment locally and finds
out from which other nodes the current node can be reached. As the system
environment is a directed graph, this means that the ant makes a list of all nodes
that are predecessor of the current node. A clone of the feasibility ant is sent to
each node in this list. The ants can be seen as moving upstream. When arrived
at the new node, the ant asks the local resource agent for its capabilities, and
merges this information with information of previous nodes. Now this ant knows
that from this node, a sequence of operation that requires a capability from the
current node followed by an operation that can be performed at its previous node
is currently feasible. This information is dropped at the local information space
of the current node, as a kind of road sign. Then the ant clones itself for every
node upstream, and the process is repeated. A feasibility ant dies if there are
no nodes upstream. Cycles can be dealt with by accumulating this information
- as such the information may not only contain sequences but also iterations of
resource capabilities. The information that is stored in local information spaces
is time-stepped, and, if not refreshed by another feasibility agent in time, that
information disappears. This is necessary to accommodate dynamic changes in
the environment both on the topology and the resources in the topology.

This process can and must be fine-tuned for every application in order to
avoid flooding. Hop limits, limited cloning budgets and probabilistic choices of
upstream nodes are a few mechanisms that can be used, but which mechanisms
are useful and effective depends on the concrete application.

Exploration Ants. Using the feasibility information available locally, a task agent
is able to find out which paths are physically or virtually feasible for achieving
the goal of its task. A task agent generates exploration ants at a certain frequency
which explore feasible paths. These exploration ants are scouts that each explore
a feasible route through the underlying system and evaluate this route. This
evaluation typically concerns completion time and quality criteria on the final
state of the task, but can also include a cost e.g. for the usage of fragile, expensive
or critical resources. To make the evaluation, an exploration ant follows a path
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Fig. 2. Exploration ants, issued by a task agent, scout feasible paths by roaming the
graph environment

through the environment, and interacts with the resource agents at the different
nodes by asking the resource agent what the timing, quality or costs would be
if a task in a particular state would arrive at a particular moment in time. The
exploration ant collects this information, and then proceeds to the next node
in the path, in which this behavior is repeated. When arrived at the end of
the path, the exploration ant returns and reports back to its base, i.e. the task
agent that created the exploration ant. Figure 2 illustrates this process for the
simple factory shown in Fig. 1. The task agent on the left hand side creates three
exploration ants for scouting feasible paths.

The information that a task agent gathers in this way from all its exploration
ants is filtered out in order to withhold the paths that are valid options for the
task at hand. An option is valid if, besides yielding the required goal, the goal
is reached in due time and with an acceptable quality and cost.

The list of candidates get refreshed regularly as exploration ants are sent out
regularly. Candidates that are not refreshed are removed over time, assuming
that these candidates have become invalid or infeasible because of changes in
the environment.

Intention Ants. Exploration as described above requires the resource agents
to possess an adequate estimate of their future workload. To serve this purpose,
task agents generate intention ants, which propagate the intention of task agents
through the environment.

The process goes as follows. When a task agent has constructed a set of valid
paths to follow, the task agent selects one candidate path to become its intention.
The criteria used for this selection depends on the requirements of the task, and
is application-specific. Then, the task agent creates intention ants, at a certain
frequency, to inform the resource agents that are involved in this intended path.

The intention ants follow the selected path, and virtually execute the rout-
ing and processing of their selected candidate solution. On their virtual journey,
the intention ants acquire travel, queuing, and processing times from the re-
source agents on their path. Any changes, which occurred since the exploration,
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Fig. 3. Intention ants, issued by a task agent, communicate the intention of the task
agent through the environment

immediately become visible when these resource agents provide the information.
In contrast to the exploration ants, intention ants inform the resource agent that
their order agent is likely to visit them at the estimated time and to perform a
particular operation. In this way, intention agents make a (evaporating) booking
on the resource, and the resource agent adjusts its load forecast (local schedule
of the resource) to account for this visit. As a consequence, resource agents are
able to predict their workload and performance more accurately to their visiting
exploration and intention ants. Similar as exploration ants, intention ants report
back to their task agent to inform the agent about the schedule and performance
of the bookings.

Figure 3 illustrates this for our simple factory example. Based on the informa-
tion that was gathered by the three exploration ants, the task ant decides that
the path explored by the last exploration ant (which explored candidate path
2) fits the task requirements best. To confirm this and align this decision with
the involved resource, an intention ant tries to walk the same path and make
bookings on its way.

One important note to make is that, as a consequence of this process, the
actual intention of a task agent, as it is distributed to the different resource
agents, is only the path that the task agent intends to follow. This intention is
then aligned with the schedules and performance of the involved resources. The
task agent decides on the path to follow in an intention, the environment and its
resources decide on the resulting schedule and performance, which may or may
not correspond with the beliefs of the task agent based on the information from
the exploration ants. As such, this process reliefs the task agent from massive
communication using complex protocols to ensure e.g. a two phase commit for
reserving all resources.

The intention information at the resource agent - the booking - evaporates.
Task agents must create intention agents to refresh their intention at a frequency
that is sufficiently high to maintain their bookings at the resources.

While refreshing, a task agent observes the evolution of the expected perfor-
mance of its current intentions through the reports on the estimated performance
that intention ants bring back. This performance estimate is compared to the
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estimates of the candidate solutions that are found and refreshed by the explo-
ration agents. When the estimated performance of the current intention drops
significantly below the estimated performance of other candidate solutions, the
task agent may revise its intention. When the task of a task agent reaches the
point where a decision needs to be executed, the task agent triggers the action
in the underlying system in accordance with the intention.

Task and Resource Agents. Let us now list the responsibilities of task and re-
sources agents. These lists should guide a developer of a coordination and control
application to define a concrete software architecture for these agents.

A resource agent is responsible for (1) answering what-if questions from ex-
ploration ants, (2) making schedules based on requests for bookings by intention
ants - the schedules must obviously respect resource constraints as well as fol-
low a predefined policy for re-scheduling, e.g. when high-priority tasks make a
booking, this may reject earlier reservations, (3) keep an up-to-date view on the
resource that the resource agent is managing (e.g. observe operation quality and
status), and (4) send out feasibility ants if no feasibility ants have contacted
this resource agent for a while. These guidelines should suffice to produce a con-
crete architecture according to the requirements of a concrete application. The
resource agent could execute each of these responsibilities in sequence, or one
may opt to define concurrent execution of some of these responsibilities.

The responsibilities of the task agents are the following. First, a task agent
must have knowledge about its task, about the initial state of the task, and
about task schemes. Task schemes describe one or several plans to achieve the
goal of the task, and given any intermediate state of the task, the task scheme
should provide one or more sub-plans to fulfill the task. Second, a task agent
must manage its beliefs. Beliefs on feasibility are readily available from the in-
formation space in the environment. Beliefs about explored paths are gathered
by exploration ants. Third, this information needs to be filtered out, yielding
valid paths - the agents desires. Fourth, based on the beliefs about the task and
the options, a task agent then chooses or revises its intention. Fifth, at appro-
priate times and frequency, exploration ants as well as intention ants are sent
out. Finally, a task agent is responsible for interacting with resource agents in
order to perform operations on its task.

Again, these responsibilities are either executed as a sequence, or one may
choose for concurrent execution of some of these responsibilities.

4 A Case Study in Manufacturing Control

We have applied the approach (in simulation) on several artificial toy examples,
and on one realistic case. In a research and development project, in collaboration
with an industrial partner, we investigated the approach for coordination and
control of a factory that produces parts of weaving machines (see Fig. 4 for a
screen shot of the factory in a simulation tool). The factory that is modeled in
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Fig. 4. A weaving machine factory - CNC machines and a warehouse, connected to a
shared tram system

this case study has a particular topology, which consists of several workstations
(machines, in the middle of the picture) and one warehouse (top of the picture),
and a shared transportation unit (on the rails). The warehouse contains storage
slots, which store containers with product parts. The warehouse is automated
in that it is capable of managing these slots itself. Besides the machine worksta-
tions, an “input station” is responsible for entering new orders into the system,
and one “output station” delivers finished product outside of the system. The
transportation unit is a tram which can visit all workstations and the warehouse.
This tram carries containers between the different workstations and between the
workstations and the warehouse.

A schematic representation of this topology illustrates the directed graph of
this environment, see Fig. 5. Conceptually, all workstations and the warehouse
are bi-directionally connected to the tram resource.

A crucial requirement for the coordination and control software for this case
is the optimization of usage of the transport system (the tram). During periods
of heavy demand for transportation (rush hour), the tram is a bottleneck and
causes workstations and operators to idle, which is expensive.

For this case, we conducted two sets of experiments. The experiments focus on
the flexibility of the approach in dealing with unpredictable timings of machine
operations. Experiments with changing topologies are promising results as well,
but are not reported here.

In a first set of experiments, we applied a straightforward detailed design
of our approach, in which the production schemes reflect current practice. The
production schemes are simple deterministic lists of sequential processing steps,
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Fig. 5. The graph environment of the manufacturing control case - a star topology

which includes a visit to the warehouse between each two successive processing
steps on workstations. The order is stored in the warehouse until the next ma-
chine where the order needs to be processed, becomes available. It may seem
illogical to visit the warehouse in between each two operations. The reason why
this is current practice is the inability of the current system to cope with flexibil-
ity for dealing with unpredictable timings of operations. When an operation is
finished on one machine, and the workstation that is going to be used for the next
step is available, a visit to the warehouse is unnecessary, and the order could be
delivered immediately. If, however, because of variation in processing time, the
workstation for the next operation is not available, even though it was predicted
to be available at this time, the transport cannot be performed. The current
industrial system (in reality) does not have up-to-date forecasts, and the effects
of direct workstation-to-workstation transports on the system performance are
therefore unclear and represent an unacceptable risk for the company.

The results obtained from this first set of experiments are quite satisfactory
compared to the current characteristics of the system as it is operational today
(numbers not available by non-disclosure). Results on the performance of the
transport system and the bottleneck machines (W3824 and W3310) in the fac-
tory are reported in Table 1. The rightmost column displays aggregated results
for all workstations.

In a second set of experiments, we aimed to test the effect of adding flexibility
to the system by allowing more flexibility in the task schemes. In these experi-
ments, visiting the warehouse is no longer mandatory but optional between each
two processing steps. Besides this change in production schemes, the task agents
and resource agents were identical to the first set of experiments. Our approach

Table 1. Results from the basic controller

Tram W3824 W3310 Total

avg. wait time 76 41 145 287

total wait time 4315 370 435 8928

max wait time 891 84 365 1587

utilization rate 8% 91% 89%
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Table 2. Results from the enhanced controller

Tram W3824 W3310 Total

avg. wait time 109 31 129 274

total wait time 4374 280 387 8488

max wait time 838 57 345 1587

utilization rate 6% 93% 90%

can benefit from this extra flexibility in the task schemes as it relies on forecasts
(intentions) that may be revised, e.g. in the case where processing a particular
operation takes longer than predicted. Table 2 shows the results for these ex-
periments. The main effect of this extra flexibility on the tram is a reduction of
its load by 25% and the number of transports by 30%. This results in reduced
waiting times for all workstation and especially for the bottleneck workstations.
The utilization rate on the bottleneck workstations increases, implying that the
overall throughput of the manufacturing system increases proportionally. This
improvement is significant, even for small percentages, since it directly affects
the financial return rate of the investments.

Further improvements are being investigated in this case. The excess capacity
on the tram, outside rush hours, can be used to prepare the work during periods
of high demand. The availability of an up-to-date prediction is essential for this
enhancement since it both informs the system whether there is an opportunity
to rearrange the storage and tells the system which rearrangement is likely to
lower the workload during upcoming periods of high demand.

Related work on MAS for Coordination and Control. The research presented
in this paper builds upon previous research on the PROSA reference architec-
ture [13]. The PROSA architecture recognizes four types of agents, being Product
agents, Resource agents, Order agents and Staff agents. Order agents represent
specific client orders (comparable to our task agents), resource agents are simi-
lar to our resource agents, product agents represent a service which knows the
product recipes (i.e. the possible sequences of operations that need to be per-
formed on an order for producing the intended product), staff agents provide a
service for the other agents by offering predefined pragmatic solutions for partic-
ular problems. The basic architecture of the approach presented here provides a
cleaner conceptual model of the core agent types (product and staff agents are
not considered as basic agent types, as they do not exhibit pro-active behavior
but merely provide services to agents), and most of all allowed us to clearly relate
the ant-based mechanisms to BDI-based architectures. This relation will foster
this research in two ways. First, it is aimed to provide a more convincing case of
our research to the community that is centered around BDI-based approaches.
Second, it opens the pathway for studying our approach in terms of well-know
and well-studied concepts (both core concepts as well as derivative concepts) in
the field of BDI-based approaches.

The main contribution of a delegate MAS design is its ability to generate
short-term forecasts; these forecasts account for recent updates on the state
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of the underlying system and the control system entities themselves. Moreover,
feasibility ant agents propagate constraints in the underlying system to wherever
they may be relevant.

In comparison, known scalable MAS coordination and control developments
are myopic [4,9]. These approaches decide about task allocations when the pre-
ceding task is about to finish or is already finished. These systems use interaction
protocols e.g. variations on the well-known contract net to implement decision-
making mechanisms. A “utility function” in such interaction protocols needs to
capture all future implications of the decisions. As a consequence, these designs
have proven to be very successful in dynamic but homogeneous environments. For
instance, [4] is capable of controlling a homogeneous collection of CNC machine
tools (Computer Numerically Controlled machines)in a factory with a flexible
transport system but fails to handle a mix of hard automation (low cost and
very fast) with flexible but expensive CNC equipment and fails to handle trans-
port systems that have limited flexibility (routing from resource A to resource
B is not always feasible). In a delegate MAS, feasibility ant agents account for
such heterogeneity and the forecasting functionality permits the coordination
and control system to account early enough for the often erratic constraints in
such production systems.

Early attempts to account for the complete sequence of production steps that
are required to execute a task, suffer from combinatorial explosions. In such de-
velopments, resource agents, when they are unable to finish a task, recursively
subcontract the remainder of this task to other resource agents before entering
their bid [7]. Recently, advanced machine learning techniques have been applied
to select candidate subcontractors and eliminate the combinatorial explosion [5].
However powerful, such solutions require software maintenance when the model of
the underlying system changes (e.g. to account for storage and transportation) by
an expert in such machine learning technology. Likewise, researchers have devel-
oped MAS control system that incorporate planning systems [10]. Again, changes
to the model of the underlying system are likely require challenging maintenance
efforts. In contrast, models in delegate MASs have a one-to-one correspondence to
the corresponding entity in the real world; their is no modeling effort required to
fit the coordination technology; delegate MAS designs stay close to reactive agent
designs in that the world almost remains its own best model.

5 Evaluation and Conclusion

Developing a real-world coordination and control application will never be easy
- the problem domains are too complex and the environment too dynamic for
this. In this paper, we do not claim that other MAS approaches to these applica-
tions (e.g. classical BDI-based or other approaches), technically cannot be used
to tackle these applications. Instead, we want (1) to emphasize the enormous
complexity that is involved in the agent software for such realistic applications,
and (2) to make a strong case that creative architectural alternatives are worth
investigating. In the approach we propose, we stick to the basic philosophy of
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belief-desires-intention agents, but exploit the environment and delegate MASs,
inspired by ant behavior, to realize beliefs, desires and intentions. This innovative
approach yields quite interesting results for the targeted application domains,
both in terms of the reduction of the agent software complexity and in overall
performance in a highly dynamic environment.

The use of a delegate MAS allows the coordination and control system to
handle changes and disturbances as “business-as-usual”. Indeed, feasibility ants
discover the (dis)appearance of resources during refresh. Likewise, lost connec-
tions and (re)connections are discovered during such refresh by feasibility ant
agents. Furthermore, disturbances such as a rush order pushing reservations by
other tasks backwards, or a temporary equipment malfunction causing similar
shifts for reservations, are detected during refresh of both intentions and candi-
date solutions by respectively intention and exploration ants. Stale information,
which refresh activities fail to update or remove, disappears through the evapo-
ration mechanism within the time needed for a few refresh cycles.

One important difference between an approach using delegate MAS and tra-
ditional BDI approach for coordination and control systems is that a delegate
MAS design extends Brooks concept of having the world as its own best model,
while traditional BDI approaches rely on maintaining world models. The basic
idea of having the “world as its own best model” only discusses the present
state of the world. In contrast, the delegate MAS approach in this paper ex-
tends this idea toward the future state, using exploration and intention ants,
while keeping modeling efforts acceptable. Indeed, resource agents only need to
be knowledgeable and intelligent about their own small section of the world.

There is one caveat to the approach: the task agents must behave in a socially
acceptable manner. This means that agents do not change their intentions too
easily and too frequently. Otherwise, minor disturbances such as a short break-
down of a resource may create an avalanche of tasks that shift to alternative
resources. The perceived improvement must be higher than a threshold value
before the current intention is replaced by the more-promising alternative.

To avoid too many agents revising their intentions at the same time, possibly
yielding thrashing behavior, task agents change their intentions probabilistically.
As a result, only a small fraction of task agents may change their intentions, and
the other agents are able to observe the consequences before changing their in-
tentions as well. Adopting this mechanism ensures that task agents will gradually
shift toward alternative routes when a disturbance occurs until a new equilibrium
is reached.

To serve the purpose of this paper, the approach was described at a high-level
of abstraction as a generic software architecture, and contained mainly hints
and guidelines for designers of real coordination and control applications, and a
report on experiments in one manufacturing control case. A detailed design of the
approach specific for manufacturing control is available. Other detailed designs
are likely to follow when adopting this approach in other concrete application
domains.
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Abstract. This paper describes CArtAgO, a framework for developing
artifact-based working environments for multiagent systems (MAS). The
framework is based on the notion of artifact, as a basic abstraction to
model and engineer objects, resources and tools designed to be used and
manipulated by agents at run-time to support their working activities,
in particular the cooperative ones. CArtAgO enables MAS engineers to
design and develop suitable artifacts, and to extend existing agent plat-
forms with the possibility to create artifact-based working environments,
programming agents to exploit them. In this paper, first the abstract
model and architecture of CArtAgO is described, then a first Java-based
prototype technology is discussed.

1 Introduction

Artifacts have been recently proposed as first-class abstractions to model and
engineer agent working environments in software MAS (multiagent systems) [1].
The background view, shared with other recent approaches in MAS literature—
see [2,3] for a survey—, is that the environment plays a fundamental role in
engineering of MAS. On the one hand, environment is a suitable locus for engi-
neers to embed responsibilities, impacting on MAS design and development; on
the other hand, it is a source of structures and services that agents can suitably
use at run-time to support and improve their activities—both individual and
social ones. The specific notion of working environment is intentionally anal-
ogous to the notion of human cooperative working environments, as they are
studied by disciplines and theories in human science, such as Activity Theory
and Distributed Cognition, and recently adopted also in the context of CSCW
(Computer Supported Cooperative Work) and HCI (Human-Computer Inter-
action) [4,5]. There, a working environment—also referred as field of work—is
such part of the environment explicitly designed to support and realise agent
working activities. Typically, it is modelled as set of objects, tools, more gen-
erally “artifacts”, which are constructed, shared, and either cooperatively (or
competitively) used by humans, so as to mediate and sustain their activities.

Analogously to human society, such a perspective is likely to be fundamental
also in the context of agent societies, in particular for designing and programming
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complex software systems based on MAS. Given that MAS are growing increas-
ingly complex, one may easily foresee that the next step in the evolution of cogni-
tive MAS will require MAS models and architectures to deal with agents situated
within suitable working environments. There, agents would autonomously con-
struct, share, and co-operatively use different kinds of artifact—designed either
by MAS designers or by the agents themselves—to perform MAS activities. It is
worth noticing that such a perspective shares the aims and principles developed
by the research work in Distributed Artificial Intelligence about theories of inter-
action, environments and the role of tools [6,7].

The artifact abstraction is at the heart of this conceptual framework—which
can be referred as A&A (agents and artifacts)—and promotes a methodology
for modelling and engineering working environments, by introducing new con-
cepts and elements that impact on system design, development and run-time
management. Artifacts can be generally conceived as passive, function-oriented
computational entities, explicitly designed to provide some kind of function, and
then to be used by agents to support their individual and collective (social) ac-
tivities [1]. The notion of “function” here refers to the meaning that is generally
used in human sciences such as sociology and anthropology, as well as in some
recent work in AI [7], that is, the purpose for which the object has been designed
for—for an artifact, to support agent activities.

This view directly impacts on the foundation of interaction and activity in
agency: a MAS is conceived as an (open) set of agents that develop their ac-
tivities by (i) computing, (ii) communicating with each other, and (iii) using
and possibly constructing shared artifacts. Artifacts could be either the targets
(outcome) of agent activities, or the tools that agents use as means to support
such activities: as such, they are useful to reduce complexity of task execu-
tion. For instance, coordination artifacts [8] are artifacts providing coordination
functionalities—such as blackboards, tuple spaces or workflow engines.

In this paper we introduce and discuss CArtAgO (Common “Artifacts for
Agents” Open framework), a framework for prototyping MAS applications with
artifact-based working environments. Essentially, CArtAgO provides (i) the API
to define any useful kind of artifacts, (ii) the API to be exploited by agents
(agent programmers) for interacting with working environments populated by
artifacts—in particular to instantiate, use, manipulate artifacts—, and (iii) a
run-time environment supporting the existence and dynamic management of
working environments. CArtAgO does not introduce any specific model or ar-
chitecture for agents and agent societies: the framework is meant to be inte-
grated and used with existing agent platforms, possibly characterised by hetero-
geneous kinds of agent architectures. From a conceptual point of view, CArtAgO
makes it possible to build MAS composed by heterogeneous agent societies,
made of reactive and cognitive agents programmed with different agent lan-
guages or architectures, sharing the same working environments, and interact-
ing through suitable mediating artifacts—besides communicating via ACL as
usual.
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The rest of the paper is organised as follows: first, we describe the abstract
model and architecture of CArtAgO (Sect. 2), focusing in particular on the core
of API introduced by the framework (Sect. 3); then, we describe a first concrete
implementation prototype (Sect. 4) developed in Java, implementing the core
part of the abstract model previously defined.

2 CArtAgO Abstract Model and Architecture

In this section we describe the basic elements and structure of CArtAgO work-
ing environments, by taking as a reference the abstract architecture schema
described in [3] and depicted in Fig. 1, useful to understand CArtAgO with re-
spect to the other approaches. Accordingly, the abstract architecture of CArtAgO
(and of CArtAgO working environments) is composed by three main building
blocks (see Fig. 2): (i) agent bodies—as the entities that make is possible to sit-
uate agents inside the working environment; (ii) artifacts—as the basic building
blocks to structure the working environment; and (iii) workspaces—as the logical
containers of artifacts, useful to define the topology of the working environment.
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direction represent perceptions. Arrows between agents represent direct agent commu-
nications, while arrows between environment abstractions represent intra-environment
interactions. Vertical lines represent the infrastructure supporting a concept at the
MAS application level.
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life-cycle of working environments, composed by artifacts grouped in workspaces. Agent
bodies are used to situate agents inside the working environments, executing actions
upon artifact and perceiving artifacts observable state and events.

2.1 Agent Bodies

Agent bodies are what actually enable the coupling between an agent (mind)
and a CArtAgO working environment. For each agent aiming at working inside
a CArtAgO environment, an agent body is created. The agent body contains
effectors to perform actions upon the working environment, and a dynamic set
of sensors to collect stimuli from the working environment. The agent body is
meant to be controlled by the agent, which actually plays the role of the “pilot”
of the body. For the purpose, the agent body exposes a controlling interface that
the agent mind could suitably exploit to interact with the environment.

By piloting their agent bodies, agents can interact with their working environ-
ment, executing actions provided for artifact construction, selection and usage,
and perceiving observable events generated from such artifacts. Differently from
the approach typically adopted in traditional agent architectures and more simi-
larly to active perception [9], here perception is modelled as an intentional action
referred as sensing. More precisely, environment observable events—generated by
artifacts—are collected as stimuli by sensors which are part of the agent body.
An agent can dynamically and flexibly link and unlink to its body different kinds
of sensor, with different functionalities, such as buffering, filtering, ordering, and
managing priorities. So, in CArtAgO sensing is the internal action that agents ex-
ecute on their sensors to become aware (perceive) of the stimuli collected by the
sensors. Stimuli typically concern observable events generated by artifacts.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



CArtAgO: A Framework for Prototyping Artifact-Based Environments 71

2.2 Artifacts

Artifacts are the basic bricks managed by CArtAgO framework. Each artifact has
a logic name specified by the artifact creator at instantiation-time, and an id,
released by the framework, to univocally identify the artifact. The logic name
is an agile way for agents to refer and speak about (shared) artifacts, while
the id is required to identify artifacts when executing actions on them. The
full name of an artifact includes also the name of the workspace(s) where it is
logically located. Since an artifact can be located in multiple workspaces, the
same artifact can be referenced by multiple full names.

Usage Interface & Observable Events. Analogously to artifacts in our so-
ciety, the basic model which characterises the interaction between agents and
artifacts is based on a notion of use and observation. Agents can use an artifact
by triggering the execution of operations listed in the artifact usage interface.
An operation is characterised by a name and a set of typed parameters. The
execution of an operation typically causes the update of the internal state of
an artifact, and possibly the generation of one or multiple observable events—
including error conditions— that can be possibly collected by agents sensor as
they are generated, and perceived by agents through explicit sensing actions.

The usage interface of an artifact can change according to artifact observable
state, exposing different sets of operations according to the specific functioning
state of the artifact. The notion of observable state is adopted to structure the
functioning behaviour of an artifact in a set of labelled states, which can be
recognised (observed) by the artifact users. For each artifact type a finite set of
labelled observable states can be defined. For each concrete instance, the notion
of current observable state is defined, and its value can change dynamically,
during artifact functioning. Then, for each observable state a different usage
interface can be defined. This feature makes it possible to structure the overall
usage interface of an artifact, providing the right interface according to the
functioning stage of the artifact. In other words, an artifact can expose different
set of operations according to its observable state.

Dynamically, an agent can trigger the execution of an operation on an artifact
if and only if the operation is (currently) part of the usage interface; if the
operation does not belong to the usage interface, the agent action fails.

Function Description and Operating Instructions. In order to support a
rational exploitation of artifacts by intelligent agents, each artifact is equipped
with a function description, i.e. an explicit description of the functionalities it
provides, and operating instructions, i.e. an explicit description of how to use the
artifact to get its function—for instance in terms of the usage protocols that the
artifact support. These descriptions are meant to be useful for cognitive agents
that—by suitably inspecting and interpreting them—can (i) dynamically reason
about which artifacts can be selected to support their activities, and (ii) get in-
structions to support activity execution, making it easier to set up plans and to
reason about the expectation of using an artifacts. We consider such issues of
foremost importance, at the core of the notion of computational environments
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designed to support the activities of agents—in particular cognitive / ratio-
nal agents. Actually, research on these aspects—in particular on formal models
and languages that can be used to specify function description and operating
instructions, and their injection in existing agent reasoning architectures (such
as BDI)—is still to be fully developed: we forward the interested reader to [10]
for the first results.

In CArtAgO, we provide a minimal enabling support to such issues, by mod-
elling function description and operating instructions as flat strings, specified by
artifact designers and dynamically inspectable (observable) by agents through
suitable actions. Currently, there is no predefined syntax and semantics for such
information (see future work for comments on this point).

2.3 Workspaces

Artifacts are logically located within workspaces, which can be used to define the
topology of the working environment. A workspace can be defined as an open
set of artifacts and agents creating and using them: artifacts can be dynamically
added to or removed from workspaces, agents can dynamically enter (join) or
exit workspaces. The same artifact can belong to multiple workspaces.

In CArtAgO, each workspace is created by specifying a logic name and is univo-
cally identified by an id. By defining a topology of the environment, workspaces
make it possible to structure agents and artifacts organisation and interaction,
in particular functioning as scopes for event generation and perception, and ar-
tifact access and use. On the one side, a necessary condition for an agent to use
an artifact is that it must exist in a workspace where the agent is located. On
the other side, events generated by the artifacts of a workspace can be observed
only by agents belonging to the same workspace.

Intersection and nesting of workspaces are supported to make it possible to
create articulated topologies. In particular, intersection is supported by allowing
the same artifacts and agents to belong to different workspaces.

3 Core Primitives

After providing an overview of CArtAgO main components, in this section we
describe the basic abstract set of core API provided by the framework on the one
side to be used by agents (or agent programmers defining agent behaviour) to
interact within working environments, and on the other side for defining artifact
types, that is programming artifacts behaviour.

3.1 Agent Side

On the agent side, the API is represented by a set of primitives to control
agent bodies and that eventually result in executing actions inside the working
environment, making it possible basically to create and use artifacts, and perceive
artifact observable state and events. Table 1 provides an abstract description of
such primitives, grouped according to their functionalities:
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Table 1. Actions available to agents to manage artifacts and workspaces

Artifact construction and createArtifact(Name,Template,Config,{WsID}):ArID
disposal disposeArtifact(ArID)

Artifact selection & use getArtifactID(Name,{WsID}):ArID
execOp(ArID,OpName,{Args},{SensorID})
sense({SensorID},{Pattern},{Timeout}):Perception
focus(ArID,SensorID)
unfocus(ArID,SensorID)

Artifacts inspection getFD(ArID): FDDescr
getOI(ArID): OIDescr
getUID(ArID): UIDDescr
getState(ArID): StateDescr

Sensor management linkSensor(SensorType,SensorConfig): SensorID
unlinkSensor({SensorID})

Workspaces management getWsID(WsName):WsID
createWS(WsName):WsID
disposeWS(WsID)
registerArtifact(ArID,WsID)
deregisterArtifact(ArID,WsID)
joinWS(WsID)
exitWS(WsID)

Artifacts construction & disposal — Basic primitives are provided to cre-
ate (createArtifact) and dispose (disposeArtifact) artifacts dynamically.
To create an artifact, a logic name must be specified, along with the Template

that identifies the type of the artifact to be created, the initial configuration
parameters needed for artifact creation and optionally the workspace where
the artifact should be created. The action can fail if the template is unknown
or the artifact instantiation is not completed due to some kind of problem
(e.g. wrong initial configuration).

Artifact discovery & use — These primitives constitute the core of agent /
artifact interactions, enabling an agent to use an artifact by executing op-
erations and observing artifact state and events. To execute an operation,
the action execOp is provided, specifying the artifact identifier, the operation
name, the parameters, and (optionally) the specific sensor where to collect
observable events generated by the artifact as a consequence of the oper-
ation execution. The action can fail either because the specified artifact is
not available, or because the operation cannot be executed since it is not
part of artifact usage interface. Action success means that the execution of
the specified operation has been successfully triggered. The identifier of an
existing artifact can be obtained by the getArtifactID primitive, specifying
the artifact name and (possibly) its location (workspace).

After triggering the operation, an agent can observe related events through
codesense primitives on the sensor specified in execOp. By executing sense
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actions, an agent is made aware of the stimuli that are dynamically collected
by a sensor. In particular, the effect of the action is to fetch (remove) a
stimulus from the sensor and to return it to the agent as a perception. The
action fails if no stimuli are available. Different types of sensors can pro-
vide different semantics establishing the order in which events are fetched. A
time parameter can be optionally provided to indicate the duration for the
sensing action: if no events are available in the sensor within the specified
time-frame, the action fails. By default, the time-frame is zero.

In order to support forms of data-driven (or, equivalently, filter-driven)
sensing, a pattern parameter can be specified acting as a filter for fetching
(selecting) the perception. Conceptually, the pattern defines a set of percep-
tions: a perception is fetched if and only if is included in the set. Typically,
the pattern can be represented by a Boolean function, establishing—given a
perception—if either it is part or not of such a set. It is worth noting that
specifying a pattern in a sense action is different from creating sensors that
filter stimuli as they are collected. An available stimulus which is not fetched
by a sense action because not satisfying the pattern is not removed from the
sensor and can be possibly fetched by subsequent sense actions.

Finally, primitives for continuous observation are provided: by executing
a focus action, an agent becomes a permanent observer of the artifact whose
identifier is specified as a parameter. As a permanent observer, all the ob-
servable events generated by the artifact are automatically collected by the
sensor specified as second parameter, as they are generated; unfocus stops
the observation.

Artifacts inspection — In order to support a cognitive use of artifacts, a basic
set of primitive is provided to inspect the function description (getFD), the
operating instructions (getOI), the usage interface (getUID), and the dynamic
observable (exposed) state (getState) of the artifact.

Sensor management — Two basic primitives are provided to dynamically
link and unlink sensors to the agent body: linkSensor links a sensor of the
specified type and configuration to the body, returning the identifier to be
used to refer the sensor; unlinkSensor unlinks a previously linked sensor.

Workspace manipulation — Finally, a basic set of primitives is provided
to manipulate the logical topology of the environment, modelled through
workspaces. Such primitives range from joinWS and exitWS to join and leave
a workspace, to getWsID for getting a workspace identifier given its name,
createWS for directly creating a new workspace and disposeWS for completely
removing a workspace.

Since the same artifact can be part of multiple workspaces, some ba-
sic primitives are provided to register (registerArtifact) / de-register
(deregisterArtifact) an artifact in / from a workspace, specifying the
workspace id.

Most of these core services have been implemented in the prototype described
in Sect. 4.
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Table 2. Basic primitives for artifact programming

Observable event generation genEvent({OpID},EventType,{EventContent})
genEventInWsp(EventType,{EventContent})

Operation management getOpID: OpID

Observable state management setObservableState(ObsStateName)
getObservableState:ObsStateName

3.2 Artifact Side

On the artifact side, CArtAgO provides a support to define new types of arti-
fact, defining artifact structure and behaviour. The specific programming model
adopted to implement in Java artifact types is described in detail in Sect. 4. Here
we report the basic set of abstract primitives which can be exploited when defin-
ing artifact behaviour (see Table 2), useful essentially for generating observable
events and switching artifact observable state.

Observable events can be generated as either related or not to the specific
execution instance of an operation. For the purpose, each operation triggered on
the artifact is labelled by a unique operation identifier (type OpId in the tables).
Such an identifier can be explicitly retrieved by the getOpId primitive during the
execution of the operation (as part of its execution body). Operation identifiers
are meant to be manageable as normal data structures, for instance, creating
list of operation identifiers and then generating events related to these operation
when necessary, during artifact functioning, across operation executions (this
aspect will be clarified by a concrete example described in Subsection 4.2).

An event can be then generated using the genEvent primitive by specifying
the operation identifier to which the event must be related, as observable effect
of this operation (and of the agent action that caused it). If no OpId is specified,
the event is considered related to the current operation triggered. The effect of
the execution of these primitives is the generation of an event which is eventually
collected by the sensor (if specified) of the agent that triggered the operation
and by all the agents that are observing—via focus—the artifact. To generate
event unrelated to a specific operation execution, the primitive getEventInWsp is
provided, which generates an event which is observed by all the agents focusing
on the artifact.

Finally, a couple of primitives are provided to manage the current observable
state of the artifact, in particular to set a new value with setObservableState,
specifying a label identifying one of the possible set of observable states defined
by the artifact type, and to retrieve current value with getObservableState.

Besides the events explicitly generated with the genEvent primitive, some other
kinds of event are automatically generated by the framework and made observ-
able to agents interacting with an artifact. In particular, an event is gener-
ated whenever the execution of an operation is completed, and whenever a new
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observable state is set (details about the specific types of these events are pro-
vided when describing in next section).

4 A First Prototype

A first prototype implementing most of the functionalities described in the pre-
vious section has been developed in Java and is available for download at the
CArtAgO project web site1. Our objective was to set up a first framework for
prototyping and experimenting applications engineered upon the A&A meta-
model, and so designed in terms of set of agents—possibly with heterogeneous
models and architectures—situated in the same working environment, designed
in terms of specific kind of artifacts. The framework itself is not meant to define
or constrain the specific agent architecture adopted to define the behaviour of
the individual agents: conversely, the framework is meant to be integrated and
exploited with external agent frameworks or platforms, in particular with those
that adopt Java as underlying implementation language, extending them so as
to support the creation and use of artifact-based environment according to the
A&A perspective.

As an example, simpA (simple A&A programming environment) is a full-
fledged agent-oriented framework for prototyping general-purpose applications
based on CArtAgO. Basically, simpA provides a support for developing MAS
based on agents with an activity-oriented architecture, with a native support
for creating and using artifact-based working environment, engineered upon
CArtAgO. The interested reader is invite to refer to the simpA web site2.

Based upon CArtAgO and simpA, simpA-WS is a framework for prototyp-
ing service-oriented application—in particular Web Service-based—in terms of
agents and artifacts. There, artifacts are used on the client side as interfaces for
user application agents to flexibly access and use Web Services, on the service
side as interfaces for service agents to get Web-service messages and requests
to be processed, and to provide responses. More information can be found at
the simpA-WS web site3. Working in the first real-world application examples,
simpA-WS is currently being investigated as an agent-based technology for pro-
totyping service-oriented applications in the context of logistics 4.

4.1 Prototype Overview

The framework is composed by four main parts:

API for setup working environments — The entry point class of the
framework is the Cartago class (sketched in Fig. 3), which mainly provides
static services to create or get the reference to existing working environments

1 CArtAgO web site: http://www.alice.unibo.it/projects/cartago
2 simpA web site: http://www.alice.unibo.it/projects/simpa
3 simpA-WS web site: http://www.alice.unibo.it/projects/simpaws
4 http://www.alice.unibo.it/projects/a4stil
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public class Cartago {

public static synchronized ICartagoEnvironment
getInstance(String name){...}

public static synchronized ICartagoEnvironment
getInstance(String name, ICartagoLoggerManager logger){...}

public static String getVersion(){...}
}

Fig. 3. Entry point class for the CArtAgO framework. The class can be used to instan-
tiate and get the reference to working environment.

public interface ICartagoEnvironment {

IAgentBody getAgentBody(String name) throws AgentBodyAlreadyPresentException;
ArtifactId createArtifact(String name, Class template, ArtifactConfig param)

throws ArtifactAlreadyPresentException,
UnknownArtifactTemplateException,
ArtifactConfigurationFailedException;

ArtifactId createArtifact(String name, Class template)
throws ArtifactAlreadyPresentException,

UnknownArtifactTemplateException,
ArtifactConfigurationFailedException;

void registerLogger(ICartagoLogger logger);
void unregisterLogger(ICartagoLogger logger);

}

Fig. 4. Interface for working environments, providing services for creating agent bod-
ies, and for directly creating artifacts, useful to setup the initial configuration of the
environment

identified by a logic name. Once created or retrieved the reference to a work-
ing environment, it is possible to use the services provided by its interface—
ICartagoEnvironment, sketched in Fig. 4—to setup the environment possibly
creating an initial set of artifacts (besides the ones created dynamically by
agents), and to create agent bodies, for enabling agents participation to the
environment.

API for controlling agent bodies — From the agent point of view, the par-
ticipation and interaction within a working environment takes place through
an agent body. The creation of an agent body is provided as the getAgentBody

provided by a working environment. Such a creation is typically done during
agent initialisation. Once its agent body is created inside the environment,
the agent—here conceived as the agent “mind”—can control it by suitably
exploiting the IAgentBody interface implemented by the agent body, contain-
ing the core set of API described in Subsection 3.1. A sketch of the IAgentBody
interface is reported in Fig. 5. It is possible to recognise the primitives for cre-
ating and disposing artifacts, for executing operations, sensing perceptions,
managing sensors, and so on.

API for defining artifact types — A core part of the framework is given
by the support provided to define new kind of artifacts, programming their
structure and behaviour. We adopted a programming model that favours
rapid prototyping of artifacts, exploiting as much as possible the support
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public interface IAgentBody {

ArtifactId createArtifact(String name, Class template, ArtifactConfig param)
throws ArtifactAlreadyPresentException,

UnknownArtifactTemplateException,
ArtifactConfigurationFailedException;

ArtifactId createArtifact(String name, Class template)
throws ArtifactAlreadyPresentException,

UnknownArtifactTemplateException,
ArtifactConfigurationFailedException;

void disposeArtifact(ArtifactId id) throws UnknownArtifactException;
ArtifactId getArtifactId(String name) throws UnknownArtifactException;

OpId execOp(ArtifactId id, Op op) throws OperationException;
OpId execOp(ArtifactId id, Op op, SensorId sid) throws OperationException;

Perception sense(SensorId sensorId)
throws NoPerceptionException;

Perception sense(SensorId sensorId, IPerceptionFilter p)
throws NoPerceptionException;

Perception sense(SensorId sensorId, int dt)
throws InterruptedException, NoPerceptionException;

Perception sense(SensorId sensorId, IPerceptionFilter p, int dt)
throws InterruptedException, NoPerceptionException;

void focus(ArtifactId aid, SensorId sid) throws SensorNotLinkedException;
void unfocus(ArtifactId aid);

SensorId linkSensor(AbstractSensor s);
void unlinkSensor(SensorId id) throws CartagoException;

}

Fig. 5. Interface to control an agent body, including methods for triggering the
execution of agent actions for artifact creation (createArtifact), artifact disposal
(disposeArtifact), artifact discovery (getArtifactId), for triggering the execution
of operation (execOp), for sensing perceptions (sense), for continuously observing ar-
tifacts (focus, unfocus), and for managing sensors (linkSensor,unlinkSensor)

public abstract class Artifact {
...
protected final ArtifactId getId(){...}

protected final OpId getOpId(){...}
protected final OpRequestDescriptor getOpRequestDescriptor(){...}

protected final void genEvent(String type) {...}
protected final void genEvent(String type, Object content) {...}
protected final void genEvent(OpId id, String type)

throws InvalidOpIdException {...}
protected final void genEvent(OpId id, String type, Object content)

throws InvalidOpIdException {...}

protected final void genEventInWsp(String type, Object content) {...}

protected final void setObservableState(String state)
throws UnknownArtifactStateException {...}

protected final String getObservableState(){...}
}

Fig. 6. Base abstract class to define new artifact types. The basic set of primitives useful
for programming artifact observable behaviour (in particular to generate observable
events, to set and retrieve the observable state) are implemented as protected methods
of this class.
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given by the Java object-oriented environment. Accordingly, an artifact type
can be defined by extending the basic Artifact class provided in the API:
at run-time, artifacts instances are instances of this class. A sketch of the
base class is shown in Fig. 6: the core set of the primitives described in
Subsection 3.2 are available as protected methods provided by the class.

The artifact internal state is defined in terms of instance fields of the class,
and the behaviour of operations can be defined by suitable instance methods
of the class. In particular an operation Op(Params) can be implemented by a
method of the kind:

@OPERATION(State1,State2,...) void Op(Params){...}

The annotation @OPERATION5 is used to explicitly state that what follows
is not to be interpreted as a normal method (meant to be invoked by other
objects) but rather as the body of an artifact operation. It is worth remarking
that methods representing operations have no return argument—a return
argument would be meaningless in CArtAgO abstract model, as well as in
the A&A general meta-model.

Currently, the concurrency model adopted for artifacts prevents operation
execution requests to be served sequentially, so that only one operation at
a time can be in execution on an artifact. Such a choice is quite effective in
avoiding basic problems related to concurrent use of artifacts by agents (and
in particular concurrent updates of artifact internal state). At the same time,
this choice limits quite strongly the concurrency in artifact use, so future
work will be devoted to explore further this issue.

As depicted in Fig. 6 and described in Subsection 3.2, observable events
can be generated in the body of an operation by a family of primitives of
the kind genEvent, specifying the event type, optionally an event content and
the operation identifier to which the event must be related (OpId parameter).
Events are collected by agent body sensors as stimuli, and then perceived
by agents through sense action. Fig. 6 also includes the primitives that
can be used to set and retrieve the current observable state of the artifact
(setObservableState and getObservableState, respectively).

The manual of the artifact, containing information about function descrip-
tion, the operating instructions, as well as the list of the observable states,
can be explicitly declared through the @ARTIFACT MANUAL annotation preced-
ing the artifact class declaration. If no states are declared, a single default
state is defined. Defined the list of the observable states, an artifact pro-
grammer can specify the shape of the usage interface in relationship to the
artifact observable state. This is possible by explicitly stating in the anno-
tation of an operation what are the observable states in which the operation
is meant to be visible (specifying @OPERATION({State1,State2,...})). If an
operation has no states declared, then the operation is meant to be visible
in all the states.

As a simple example, Fig. 7 shows the definition of an artifact type called
MyArtifact (on the left), and an example of artifact use by an agent (on

5 Annotations have been introduced along with the 5.0 version of Java.
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\begin{verbatim}
@ARTIFACT_MANUAL(

states = {"stateA","stateB"},
start_state = "stateA",
oi = @OPERATING_INSTRUCTIONS("..."),
fd = @FUNCTION_DESCRIPTION("...")

) public class MyArtifact extends Artifact {

private int count;
private int max;

public CounterArtifact(int max){
this.max = max;
count = 0;

}

@OPERATION({"stateA"}) void op1() {
count++;
genEvent("new_value",count);
if (count >= max){

setObservableState("stateB");
}

}

@OPERATION({"stateA","stateB"}) void op2() {
genEvent("value",count);

}
}

...
ICartagoEnvironment env = Cartago.getInstance("...");
IAgentBody myBody = env.getAgentBody("...");

ArtifactId aid = myBody.getArtifactId("myArtifact");
SensorId sid = myBody.linkSensor(new DefaultSensor());

BasicFilter myFilter1 = new BasicFilter({"new_value"});
BasicFilter myFilter2 =

new BasicFilter({"op_completed",
"state_changed"});

boolean state_changed = false;
while (!state_changed){

try {
myBody.execOp(aid,"op1",sid);

// operation triggered:
// sensing for one second for new_value events...
Perception p = myBody.sense(sid,myFilter1,1000);
log("current value: "+p.getContent());

// observing next observable event,
// which should be either
// op_completed or state_changed
Perception p = myBody.sense(sid,myFilter2,1000);

String type = p.getType();
if (type.equals("state_changed")){

state_changed = true;
}

} catch (NoPerceptionException ex){
// something wrong happened in the artifact
// or simply artifact too slow in executing the op...
break;

} catch (OperationNotAvailableException ex){
// inc was not part of artifact usage interface...
break;

}
}
...

Fig. 7. (Left) Complete definition of the MyArtifact type; (Right) A code fragment
showing an example of use of a MyArtifact artifact

the right). As declared in the artifact manual, artifacts of sfMyArtifact kind
have two possible observable states, labelled as stateA and sfstateB, with
the former functioning as starting state. In the stateA state, the usage in-
terface includes both the op1 and op2 operations, while in the stateB state
the usage interface includes only op2. The execution of the op1 operation
causes the update of an internal counter of the artifact, whose new value is
made observable by generating a new value event. When the internal counter
reaches a maximum value (provided with artifact initialisation), the artifact
changes its observable state from stateA to stateB. The execution of the op2

operation simply makes the current value of the internal counter observable,
by generating an event of the kind value. As far as the artifact use is con-
cerned, in the fragment—after creating an agent body inside the working
environment where the artifact is located—op1 operation is executed repeat-
edly, logging each time the value perceived by observing events generated
as a consequence of the operation execution, until a change of artifact state
is observed. In the example, two filters—instances of the class BasicFilter,
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part of the utility class of CArtAgO—are used to select the perceptions. Using
BasicFilter, a stimulus is selected if and only if its type description matches
one of the descriptions provided as parameter of BasicFilter constructor
(implemented as array of strings).

Run-time environment and related tools — This is the part actually re-
sponsible of the life-cycle management of working environments at run-time.
Conceptually, it is the virtual machine where artifacts and agent bodies are
instantiated and managed that is responsible of executing operations on ar-
tifacts and collecting and routing observable events generated by artifacts.
Some tools are also made available in CArtAgO for on-line inspection of work-
ing environment state, in particular artifact state and behaviour, in terms
operation executed and events generated.

4.2 A Complete Example: Hello Philosophers!

To illustrate a simple but complete example of MAS application exploit-
ing artifact-based working environments, we consider the “Hello philosophers”
example—listed among the basic examples in CArtAgO distribution—, which is
used here analogously to the (in)famous “Hello world” example for traditional
programming languages.

The example refers to the well-known problem introduced by Dijkstra in the
context of concurrent programming to check the expressiveness of mechanisms
and abstractions introduced to coordinate set of cooperating / competing com-
puting agents. Briefly, the problem is about a set of N philosophers (typically
5) sharing N chopsticks for eating spaghetti, sitting at a round table (so each
philosopher share her left and right chopsticks with a friend philosopher on the
left and one on the right). The goal of each philosopher is to live a joyful life,
interleaving thinking activity, for which they actually do not need any resources,
to eating activity, for which they need to take and use both the chopsticks. The
goal of the overall philosophers society is to share the chopsticks fruitfully, and
coordinate the access to shared resources so as to avoid forms of deadlock or
starvation of individual philosophers—e.g. when all philosophers have one chop-
stick each. The social constraint of the society is that a chopstick cannot be used
simultaneously by more than one philosopher.

The problem can be solved indeed in many different ways. By adopting the
A&A perspective, it is natural to model the philosophers as cooperative agents
and the table—managing the set of chopsticks—as the coordination artifact that
agents share and use to perform their (eating) activities. It is easy to encapsulate
in the table artifact the enactment of the social policy that makes it possible
to satisfy both mutual exclusion for the access on the individual chopsticks, and
avoid deadlock situations.

Fig. 8 shows the complete application, with the table artifact implemented
upon CArtAgO, the agent philosophers directly implemented as flat Java threads,
without relying on a specific agent architecture.

The usage interface of the table artifact is composed by only two operations,
getChops and releaseChops, which can be used respectively to get two chopsticks
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import alice.cartago.*;
import java.util.*;

public class Table extends Artifact {
private boolean[] chops;
private List<PendingReq> reqs;

public Table(int nchops){
chops = new boolean[nchops];
reqs = new LinkedList<PendingReq>();
for (int i = 0; i<chops.length; i++){

chops[i]=true;
}

}

@OPERATION void getChops(int c0, c1){
if (chops[c0] && chops[c1]){

chops[c0] = chops[c1] = false;
genEvent("chops_acquired");

} else {
PendingReq req =

new PendingReq(c0, c1, getOpId());
reqs.add(req);

}
}

@OPERATION void releaseChops(int c0, int c1){
chops[c0] = chops[c1] = true;
Iterator<PendingReq> it = reqs.listIterator();
while (it.hasNext()){

PendingReq r = it.next();
if (chops[r.c0] && chops[r.c1]){

it.remove();
chops[r.c0] = chops[r.c1] = false;
try {

genEvent(r.reqId,"chops_acquired");
} catch (Exception ex){}

}
}

}

private static class PendingReq {
public int c0,c1;
public OpId reqId;
public PendingReq(int c0, int c1, OpId id){

this.c0 = c0; this.c1 = c1; reqId = id;
}

}
}

public class HelloPhilosophers {
public static void main(String[] args) throws Exception {

String envName = "restaurant";
ICartagoEnvironment env = Cartago.getInstance(envName);
env.createArtifact("table",Table.class,new ArtifactConfig(5));
for (int i = 0; i<5; i++){

new Philosopher("philo-"+i,i, (i+1)%nphilo,envName).start();
}

}
}

import java.util.*;
import alice.cartago.*;

public class Philosopher extends Thread {
private int lchop, rchop;
private IAgentBody myBody;
private String name;

public Philosopher(String name, int c0, int c1,
String envName) throws Exception {

this.name=name;
lchop = c0;
rchop = c1;
ICartagoEnvironment env = Cartago.getInstance(envName);
myBody = env.getAgentBody(name);

}

public void run() {
try {

ArtifactId tableId = myBody.getArtifactId("table");
SensorId sid = myBody.linkSensor(new DefaultSensor());
Op getOp = new Op("getChops",lchop, rchop);
Op releaseOp = new Op("releaseChops",lchop, rchop);
IPerceptionFilter myFilter =

new BasicFilter("chops_acquired");
while (true){

myBody.execOp(tableId,getOp,sid);
try {

myBody.sense(sid,myFilter,5000);
eating();

} catch(NoPerceptionException ex) {
log("starved.");
break;

}
myBody.execOp(tableId,releaseOp);
thinking();

}
} catch (Exception ex){
}

}

private void eating(){...}
private void thinking() {...}
private void log(String msg){...}

}

Fig. 8. Dining philosophers interacting within through a CArtAgO working environ-
ment called restaurant. Philosophers agents are simply implemented upon flat Java
threads, while the table is implemented as a table artifact of class Table.

from the table and to give them back. The inner machinery of the table arti-
fact ensures mutual exclusion on the access on chopsticks (an artifact executes
one operation at a time, analogously to monitors) and deadlock avoidance (by
releasing the chopsticks only if both are available, enqueueing the pending re-
quests). It is worth noting the way in which observable events are generated: if
the chopsticks are available when an instance of getChops operation is triggered,
then the event chops acquired is immediately generated, through the genEvent

primitive; otherwise, the pending request is enqueued and the event is generated
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as soon as the chopsticks become available with the execution of a releaseChops

operation.
On the agent side, a philosopher gets an agent body during its initialisation,

and then exploits it during its main activity—which is defined by the body of the
method run. It is worth remarking that here we adopted such a simplistic imple-
mentation for agents just to make the description of CArtAgO usage and integra-
tion with agent platforms as simple and concise as possible. The same example
using simpA agent framework can be found in simpA distribution. Agent main
activity accounts for repeatedly alternate eating and thinking sub-activities, us-
ing the table artifact to get (and release) the chopsticks. In particular, to get
the chopsticks the agent triggers the execution of the getChops operation on the
table artifact, specifying a sensor (previously linked to its body) to collect stim-
uli related to this action. Then, it pro-actively observes the sensor for 5 seconds
using the sense primitive, filtering stimuli that concern chops acquired events. If
no perception is sensed within 5 seconds, the philosopher starves and terminates.
Otherwise, it performs its eating activity and then, after eating, it releases the
chopsticks by executing a releaseChops operation on the table artifact, without
specifying any sensor (since, in this simple implementation, it is not interested
to observe the effects of such an action).

5 Related Works

The approach based on artifacts shares the same engineering aims introduced
by Weyns and colleagues in [11], where they identify a general model and an
architecture that can be (re-)used to engineer environments in MAS, despite of
the specific application domain. The model presented by the authors is concern-
based : the environment is modelled as a set of modules that represent different
functional concerns of the environment. A similar focus, but in some sense less
general, can be found also in the work of Platon and colleagues [12], where a
general model for environments providing functionalities for over-hearing and
over-sensing is presented. Our notion of artifact could be compared at a first
glance with the notion of functional modules describe by Weyns and colleagues.
The main difference is that artifacts are conceived to be first-class abstractions
both for the engineers designing and programming agent environment and for
the agents using such an environment : agents do not perceive the environment as
a single entity providing a set of functionalities (which are internally engineered
upon a set of modules), but directly create, share, use, manipulate, destroy
artifacts, each designed to encapsulate some kind of function.

The model for perception and sensing described in the paper shares many
points with the model—more general—discussed in [9], introducing the notion
of active perceptions. Such a model decomposes perceptions into a succession
of three functionalities: sensing, interpreting and filtering. First, sensing maps
the state of the environment to a representation. The agent can select a set of
foci, that enable the agent to sense specific type of data in the environment. The
representation of the state is composed according to a set of perception laws, that
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can be used by designers to enforce specific constraints on perceptions. Then,
agents interpret representations by means of descriptions, that are blueprints
that map representation onto percepts, modelled as expressions that can be
understood by the internal machinery of the agent. Finally, agents can select a
set of filters, to restrict the perceived data according to specific context relevant
selection criteria.

In our model, sensors and sense actions provide some of the functionalities
discussed above. In particular, by following the meaning introduced by the au-
thors, each sensor can be used as a specific focus: the idea is that an agent
can dynamically create and link to their body different kind of sensors, with
distinct features (such as buffering, filtering, etc), to partition the perceptions
from the environment, in our case related to artifacts (even if the model can be
extended to consider also perceptions directly related to other agents). Similar
to perceptual laws discussed above, sensor activity can be constrained according
to laws enforced by the organisational and physical context where the agent is
situated: this aspect will be explored in future work, with the introduction of an
explicit support for organisation modelling on top of workspaces (see Sect. 6).
Pattern-driven sensing described in Sect. 3 could be framed as a simplified form
of filtering as defined in active perceptions, with some points that concern also
interpretation: patterns act as simple filters that agents can specify to fetch in
a data-driven way the data collected by sensors, and require that an explicit
description is adopted for describing the events or stimuli posted to sensors.

Finally, the artifact abstraction and CArtAgO framework draw on the research
work on tuple centres as programmable tuple-based coordination media and
TuCSoN coordination model [13]. Artifacts can be framed as a generalisation of
the notion of tuple centre: more precisely, tuple centres can be conceived as a type
of coordination artifacts [8], as artifacts designed to encapsulate programmable
coordination services.

6 Concluding Remarks

In this paper we described CArtAgO, as a framework supporting the engineering
of artifact-based working environment in MAS. First we described the abstract
model and architecture of the framework, and then a first basic prototype tech-
nology implementing most of the core functionalities.

Among the issues not considered for lack of space—and that can be found in
the artifact conceptual framework—we mention here: (i) artifact composition—
support for linking together existing artifacts to dynamically compose complex
artifacts, by defining and exploiting artifact link interfaces ; (ii) artifact manage-
ment—support for inspecting, controlling, testing artifact state and behaviour,
by defining and exploiting artifacts management interface, besides usage inter-
face. Among the issues not currently faced in CArtAgO, and that will be part of
our future work, we mention here distribution, security, and organisation.

As far as distribution is concerned, currently in CArtAgO there is no explicit
account for the way in which workspaces—and possibly also artifacts—can be
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distributed across multiple nodes of a networks. In current version, working en-
vironments are confined to a single CArtAgO virtual machine (node) and then
agents can create and use artifacts that live in their local environment. Distri-
bution is achieved by ad-hoc linking of artifacts, that is, by exploiting network
connections that makes it possible the low-level communication among artifacts
belonging to different workspaces and working environments. In future work
we will focus on extending the framework towards a full-fledged infrastructure,
providing a first-class support for such an aspect.

Security and organisation are related issues, and call for the introduction of an
explicit support for organisation built on top of the basic CArtAgO abstractions,
which would be effective also to model security aspects such as access control.
By drawing on our previous research work about such aspects on TuCSoN infras-
tructure, in CArtAgO we plan to introduce a role-based model, inspired to RBAC
(Role-Based Access Control) architectures [14], such as RBAC-MAS [15]. Such
a model will be based on the notion of workplace. A workplace defines the set of
roles and related organisational rules or contracts being in force in a workspace.
The contracts defines, in particular, the norms and policies that rule agent ac-
cess to the artifacts belonging to the workspace. For example, depending on
the role(s) that an agent is playing inside the workplace, it may have or not
the permission to use some artifacts or to execute some specific operations on
some specific artifacts. So, workplaces would define an organisational layer—and,
consequently, a security layer—on top of workspaces.

Besides the above three main points, future work will be devoted also: (i) to
improve the development of the prototype, including all the missing features that
are currently part of the abstract model—such as the support for workspaces—
and future extensions—such as workplaces; (ii) to integrate existing services as
kinds of artifact, in order to be easily re-used when engineering applications on
top of CArtAgO: an example is given by artifacts wrapping TuCSoN tuple centres,
providing agent coordination facilities; (iii) to define suitable formal models
and ontology for describing function descriptions, operating instructions, and
observable state description, possibly reusing existing research efforts on service
description models and (standard) languages, such as OWL-S.

Finally, existing and ongoing research in environment for MAS will be impor-
tant to improve the theoretical foundation of CArtAgO, concerning the notion of
artifact and related concepts: for instance, the research work on active perceptions
can be important to improve and extend the model of sensing currently adopted.
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Abstract. Indirect interactions have been shown to be of interest in
MultiAgent Systems (MAS), in the simulation area as well as in real ap-
plications. The environment is also emerging as a first-order abstraction.
Intuitively, the environment being a common medium for the agents, it
should be a suitable paradigm to provide an infrastructure for both di-
rect and indirect interactions. However, it still lacks of a consensus on
how the two relate to each other, and how the environment can support
effectively notions as communication or awareness. We propose a general
and operational model, Environment as Active Support of Interaction,
that enables the agents to actively participate in the definition of their
perceptions. Then, we show how the model provides a suitable framework
for the regulation of the MAS interactions.

1 Introduction

The environment is emerging as a first-order abstraction in MultiAgent Systems
(MAS) [19], thus opening many challenges in terms of modeling, methodology
and engineering, but also of autonomy and awareness of the agents [15,16]. In
these works, it has been shown that it is possible to take advantage of the
environment in order to improve the interactions. It notably assumes providing
both observability of the entities in this environment and the sharing of the
interactions. This use of the environment extends the traditionnal means and
models of interaction. Early work [1] featured the sharing of the communications
via the environment. This modeling allows flexibility and shows low computation
and communication costs [21]. The Environment as Active Support of Interaction
(EASI) model extends these principles to cover other inter-agents interactions,
and notably enables the agents to choose their perceptions.

An important part of the solicitations in real-life situations comes from other
means than direct transmissions [5]. They are enabled by a particular state of
the participants, the awareness, which has long been considered as the result
of unwanted perceptions. We argue that the awareness is an active state, and
not only the result of stimuli. Works in the fields of psychology and sociology
have discussed whether or not there also has to be an active participation of
the “perceiver”. For example, Heath [10] says that awareness is both a state
of availability to the environment and an ability to “filter relevant information
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which is of particular significance”. Moreover, even at the physiological level,
Warren [18] highlights that hearing combines a receptive activity with, right
from the lowest level, decisions of action. Based on this, we propose a model that
enables the agents to control their perceptions, and thus that enables awareness,
by means of the environment. We describe the EASI model and its benefits in
term of active perception in section 2. Then we exploit this formalization to
allow the environment to regulate the MAS and achieve interactional awareness
in section 3. Section 4 goes into the detail of an illustrative example, and we
explore related works in section 5.

2 The EASI Model

In EASI, we model the environment as a common space of interaction, in order
to enable the agents to choose their perceptions. The problem when all the in-
teractions can be observed is to give to the agents an efficient way of finding the
interesting ones, i.e. only those that are potentially needed. To find useful infor-
mation within a very large data set, we have based our model on the symbolic
data analysis (SDA). The goal of SDA is to discover data by modeling both qual-
itative and quantitative data grouped into symbolic objects. The SDA algebra
is compatible with first-order logic and SQL, and can thus be implemented for
instance via rule-based engines, Active Databases, etc. For multiagent systems,
we consider that the environment contains symbolic descriptions of the elements
that have a role in the interaction: agents, messages and objects. The objective
is to enable the agents to use these descriptions in order to adapt the potential
interactions to their needs.

Let us introduce basic SDA definitions [3]. A symbolic object is a triple s =
(a, Rs, ds) where Rs is a set of comparison operators between descriptions (Rs ⊂
R with R the set of operators), ds is a set of descriptions (ds ⊂ D, with D the set
of descriptions) and a is a mapping from Ω (set of individuals, also called entities)
in L (L = {true, false} or L = [0, 1]). In this paper, we consider only the first
case where L is boolean. An assertion is a special case of a symbolic object and
is written as follows: ∀w ∈ Ω as(w) = ∧i=1,...,p [yi(w)Ridi] where yi(w) is the
value of the individual w for the symbolic variable yi. When an assertion is asked
of any particular entity w ∈ Ω, it assumes a value true (as(w) = true) if that
assertion holds for that entity, or false (as(w) = false) if not. A symbolic object
is the intention definition of the entities according to a relation set between their
own description and a description set d. The extension definition of a symbolic
object (in this case an assertion) is noted E(s) = {w ∈ Ω | as(w) = true}, it is
the set of entities whose description matches the intention definition.

2.1 Interaction Model: Basic Definitions

Based on the SDA definitions, and considering the particular features of the MAS
paradigm, we define the environment as a tuple of the sets that are necessary to
its description.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Environment as Active Support of Interaction 89

Definition 1 (Environment of Interaction). E = 〈Ω, D, P, R, F 〉
– Ω is the set of entities.
– P = {Pi|i ∈ I}, P is the set of observable properties.

Pi : Ω → di ∪ {null, unknown}. Pi is a mapping from an entity to the value
of its property i.

– D =
∏

i∈I

di with di the description domain of Pi.

– R =
∏

i∈I

Ri with Ri the set of comparison operators of Pi.

– F is the set of filters.

For SDA, the search for pertinent sets of entities is an objective, but in multi-
agent systems they are generally given by the problem analysis. For instance, a
particular type of agent is a subset of entities. More generally, the set of entities
representing a MAS is Ω = A ∪ O ∪ IO, where:

– A is the set of agents.
– O is the set of objects.
– IO is the set of interaction objects.

The basic component of our model is an entity. This abstraction level is nec-
essary to model every kind of interaction: an entity is described by symbolic
variables and a particular interaction involves a subset of entities that are iden-
tified through the required symbolic variables description. As a minimum, an
interaction puts together an agent and an interaction object, and optionally
other agents, interaction objects, or objects of the environment. The interaction
objects are particular objects that convey information, for example messages
and traces.

In this paper, the agents are communicative agents using interaction objects
to interact. For each of these subsets of entities, a description, noted respectively
DIO and DA, is given. If I = 1 . . . p is the set of indices of the symbolic variables,
then IIO ⊂ I and IA ⊂ I are the subsets related to IO and A. The application
description y from SDA is renamed P , which stands for observable Property. If
an observable property is not defined for an entity, then its default value is null;
if the property exists but does not have a value, its default value is unknown.

The entities sharing the same properties can be grouped together. A subset of
entities is the extension of an assertion verifying the existence of a subset of P .
Let de (de ⊂ D) be the description set of the subset e (e ⊂ Ω), Pe (Pe ⊂ P ) its
application description, and Ie (Ie ⊂ I) the subset of indices, e is the extension
of the assertion as(w) = ∧i∈Ie [Pi(w) 
= null].

An agent category AC is a subset of A. The agents that belong to a category
share the same defined properties, and each agent is member of at least one
category.

Definition 2 (Agent Category). If a is an agent then ∃AC ⊂ A, a ∈ AC ,
as(a) = ∧i∈IAC

[Pi(a) 
= null].
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An agent category is a particular assertion defined by a set of mandatory non
null P ; however the value(s) of these properties may be different for each of
the entities. The set of agents that belong to this category is the extension of
the assertion, i.e. all the individuals in A for which these P are defined. The
categories of agents are not a partition of A, so that an agent may belong to
several categories.

In our model, only what is useful for interaction – from the viewpoint of the
environment – is taken into account. This can be seen as the public part of the
agents, which is independent from their private part (such as their knowledge
or their internal architecture). This definition implies that, from the interac-
tion viewpoint, the agents that have identical descriptions are similar: they can
receive the same messages.

Following the agent category definition, an interaction object category is com-
posed of interaction objects that exhibit the same observable properties.

Definition 3 (Interaction Object Category). If io is an interaction object
then ∃IOs ⊂ IO, io ∈ IOs, as(io) = ∧i∈IIOs

[Pi(io) 
= null].

As for the agents, our model only takes into account what has to be observable
within the environment. In EASI, there is no conceptual difference between each
kind of interaction object (message, or object such as traces); they are defined
only according to their description set. Thus, an interaction is defined in a generic
way. For instance, a category of interaction objects may be an Agent Commu-
nication Language, in which case the category will be defined by the set of ob-
servable properties necessary to its mapping. For example, the set of observable
properties defining the FIPA-ACL1 message category is: messagetype, sender, re-
ceiver, reply-to, content, language, encoding, ontology, protocol, conversation-id,
reply-with, in-reply-to, reply-by.

These general definitions are the framework to define the agents and interac-
tion objects in EASI.

The observability of particular properties may be necessary to ensure some
features, for example the semantics of the communication language(s). A mini-
mal property is a property that is required for each entity.

Definition 4 (Minimal property of an entity). p ∈ P is a minimal property
for the category EC iff ∀ei ∈ EC , p(ei) 
= null.

The MAS designer may define minimal properties for a category of entities: each
entity must have a non null description for these properties. For an operational
use, we add a specific observable property, the agent identifier:
∀ a ∈ A, Pid(a) 
= null with Pid : A → N.

This definition implies that Pid is a minimal property for an agent: the exis-
tence and observability of this property is mandatory for all the agents.

SDA is originally an analysis tool for complex data, it is powerful to describe
the entities of the MAS both at design time and at run-time. The context of
the MAS is made up of the observable properties of the entities. We use these
1 http://www.fipa.org/specs/fipa00070/SC00070I.html
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descriptions to manage dynamically the interaction infrastructure via filters.
We have seen that in SDA an assertion puts together entities according to a
description. To model an interaction, more than one kind of entity must be
gathered, this is why a filter is a conjunction of assertions on these entities. A
filter has to connect at least the description of an agent to the other components
of the interaction. Thus, a filter is a conjunction of constraints on the descriptions
of an agent and of a context that triggers (if satisfied) an action of this agent.

Definition 5 (Filter). If a ∈ A, C ⊂ Ω, Cact ⊂ C, f(a, C) =
∧i∈Ifa

[Pi(a) Rfa
i dfa

i ] ∧ (∀e ∈ C ∧i∈Ife
[Pi(e) Rfe

i dfe
i ]), holds(f(a, C)) →

action(a, Cact).

In this definition a is the description of the agent(s) involved and Ifa ⊂ I
contains the indices of P that are used in f as selection criteria for the agent.
Rfa

i ⊂ R and dfa
i ⊂ D are respectively the operators and descriptions that

define the conditions on the agent(s) description a. The notation is the same for
the elements e of the filter context C. By context, we mean the other entities
gathered by the filter. The observable state of an agent, the exchange of a message
between agents, the presence of a particular object or the combination of these
instances can be used to define a particular context. As with the assertions, the
filters can take two values, true or false, which indicate whether the agent(s)
that fulfill the description will be affected by the action associated to the filter
– case true, the filter holds – or not – case false –. The nature of this action
action(a, Cact) depends on the type of filter, and involves a subset of the entities
belonging to the context.

In the case of interaction filters, the action when the filter holds is the per-
ception of an interaction object. This is formalized by introducing the primitive
perceive(a, {io}∪Cact), which means the perception of the interaction object io
and possibly of a part of the context Cact by the agent(s) described by a:

Definition 6 (Interaction Filter). If a ∈ A, io ∈ IO, C ⊂ Ω, Cact ⊂
C, f(a, {io} ∪ C) = ∧i∈Ifa

[Pi(a) Rfa
i dfa

i ] ∧i∈Ifio
[Pi(io) Rfio

i dfio
i ] ∧ (∀e ∈

C ∧i∈Ife
[Pi(e) Rfe

i dfe
i ]), holds(f(a, {io} ∪ C)) → perceive(a, {io} ∪ Cact).

In this definition, which is a special case of the previous one, an io transmission
is imposed to define an interaction. An interaction filter is the conjunction of at
least two assertions, the first is related to the receiver and the second is related to
the io. C is still the context of the interaction and is optional, as the conditions
on the io and a may be sufficient. In the following definitions, let F be the set
of filters in the environment.

The use of filters enables the agents to choose the interaction objects they will
perceive. The author of a filter – the entity that adds it in the environment –
attaches a priority level to it. Practically, the priority is a numeral. It determines,
according to the needs of the author, the order of the filters in the environment.

Definition 7 (Filter Priority). ∀f ∈ F, ∃k ∈ IP, priority : F → IP, f �→ k
where IP is an interval on N.
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a3

a1

Psp = clothes
Pid = 1

Pid = 4
Psp = clothes

Psp = cultural
Pid = 3

f1

f2

f3

Ps = inform
Psp = books
Pse = 1

a4

Ps = request
Psp = clothes
Pse = 2

Ppr = books
Pc = 147
Pid = 2

a2

Fig. 1. Example 1: MarketPlace

These definitions are illustrated by an example of MarketPlace (Fig.1): sellers
(specialized in a domain) and clients (looking for a set of products) communicate
in order to find the best agreement. Each client has to buy virtual money, which
is used to carry out the payments in a secure way. According to EASI, the
following modeling is proposed: the set of entities is Ω = A ∪ ML, with A the
set of agents and ML the set of messages defining an ad hoc langage. There are
eight properties:

1. Pid (id for identifier): A → NA (NA ⊂ N);
2. Psp (sp for specialty): A → {cultural, clothes, ...} ;
3. Ppr (pr for products): A → P({books, ...}) with P(E) the power set of E;
4. Pc (c for credit): A → N;
5. Ps (s for subject): ML → {request, accept, inform};
6. Pr (r for receiver):ML → NA;
7. Pse (se for sender): ML → NA;
8. Pp (p for price): A → R.

The properties of the agents and messages respectively are IA = {1...4} and
IML = {2, 3, 5, 6, 7, 8}. Seller (ASe) and Client (ACl) are the two categories of
agents, respectively with ISe = {1, 2}, and ICl = {1, 3, 4}. There are also two
categories of messages: MDi (Di for discount) is used by the sellers to send
special offers on products, with IDi = {3, 5, 7, 8}; and MCo (Co for contract) is
exchanged by sellers and clients to find an agreement, with ICo = {2, 5, 6, 7}.

According to the Definition 6, the observable properties are numbered in the
filters; we replace these numbers by explicit tags, e.g. P2 by Psp. The definitions
of the filters are summarized in Fig. 2. f1 is a multicast example: a client sends a
request according to the specialty of a seller to negotiate the price of a product.
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holds(f(a, {m} ∪ C)) → perceive(a, {m}) with
f1(a, {m}) = [Psp(a) = Psp(m)] ∧ [Ps(m) = request]
f2(a, {m} ∪ C) = [Ps(m) = inform] ∧ [Ppr(m) ∈ Ppr(a)]

∧(∀mr ∈ E(Am)[Pp(m) < Pp(mr)]), C = E(Am)
f3(a, {m} ∪ C) = [Psp(a) = Psp(ar)] ∧ [Pid(a) �= Pid(ar)]

∧[Ps(m) = inform] ∧ [Pse(a) = Pid(ar)], C = {ar}

Fig. 2. Example 1: Filters

f2 enables interactions based on the needs of the receiver(s): a client receives
only the best special offer for the products it is looking for. The set of special
offers is the extension E(Am) = {mo ∈ ML|Am(mo) = true} of the assertion
Am(s) = [Ps(s) = inform] ∧ [Ppr(s) = Ppr(m)]}. Finally, f3 is an example
of overhearing: a seller receives every special offers proposed by other sellers
(ar ∈ A) with the same specialty.

2.2 Information on the Interaction

The EASI formalization enables us to gather information on the interaction
situation by defining significant sets of entities. The perception domain of a filter
according to an agent and a message is an extension of the assertions composing
a filter, i.e. the sets of agents and interaction objects concerned by this filter.
The perception domain indicates whether or not the agents and the messages
have the observable properties required by the filter definition, but it does not
verify the properties values.

Definition 8 (Perception Domain of a Filter). For a filter f(a, {io} ∪ C):

– E(fa) = {AC ⊂ A|∀a ∈ AC ∧i∈Ifa
[Pi(a) 
= null]}

– E(fio) = {IOL ⊂ IO|∀m ∈ IOL ∧i∈Ifio
[Pi(io) 
= null]}

These sets contain the descriptions of entities that a filter gathers to produce an
interaction and are used by the agents to compose their interactional domain.
When E(fa) = null or E(fio) = null, there is currently no agent (respectively
interaction object) which corresponds to the descriptions. This means the filter is
either badly conceived, or has expired. In the example, for f1 we have E(f1,io) =
MCo, the contract messages are dispatched thanks to this filter; and E(f1,a) =
ASe, the seller agents are the potential receivers.

The perception channels of an Agent is the set of filters that concern this agent,
i.e. the agent belongs to the perception domain of all and only these filters.

Axiom 1 (Perception Channels of an Agent). ∀a ∈ A, perceptiona = {f ∈
F |a ∈ E(fa)}.
For an agent a, perceptiona is composed of the filters added by the agent itself
and for each of these filters, E(fa) and E(fio) concern its needs as receiver.
perceptiona also contains the filters added by other agents, but which concern
a. In this case, E(fa) and E(fio) represent the needs of the sender(s) using the
filter. perceptiona is the “interface” to interact with an agent: the agent can
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perceive an interaction object only through one of these filters. This interface
evolves according to the needs of the agent itself and to those of the agents
wanting to interact with it. For a1 ∈ ASe a seller agent, perceptiona1 is {f1, f3}:
f1 corresponds to the needs of the clients and f2 to its needs as a seller.

The percept of an agent corresponds to the set of interaction objects the agent
can perceive thanks to its perception channels. This set is defined as follows:

Axiom 2 (Percept of an Agent). Percepta = {io ∈ IO|∃f ∈ perceptiona,
io ∈ E(fio)}.
If percepta is empty then a is “deaf”. It can be a choice; this agent has a task to
perform and does not need to perceive interaction objects, and no other agent
wants to interact with it. Because this set is dynamically updated, it may be
a temporary choice. Nevertheless, this agent can send messages and therefore
is not isolated from an interactional viewpoint. If perceptiona is not empty but
Percepta is, it means that perceptiona does not match the “language” the other
agents use: it uses observable properties that currently do not exist in any io
description. For MCo = {m1} and MDi = {m2}, we have Percepta1 = {m1, m2}.

In the same way, EASI proposes to analyse the link between a message and the
potential interactions: the channels of an interaction object is the set of filters
it may be transmitted through.

Axiom 3 (Channels of an Interaction Object). ∀io ∈ IO, channelio =
{f ∈ F |io ∈ E(fio)}.
If channelio is empty, then no agent will perceive this interaction object, because
there is no filter that matches it. In this case, the sender has either to create
a new filter or to modify the message. The perception domain of a message
corresponds to the set of its receivers. In our example, channelm2 is composed
of f1 and f3.

Finally, the perception domain of an interaction object is the set of agents
that could perceive this interaction object.

Axiom 4 (Perception Domain of an Interaction Object). Receiverio =
{a ∈ A|∃f ∈ channelio, a ∈ E(fa)}.
If channelio is not empty and Receiverio is, it means that the description of the
receiver is not correct and the filters in channelio have to be modified. In the
exemple, we have Receiverm2 = {a1, a2} with a2 ∈ ACl.

As the filter definition includes the context of the interaction as well as the
description of other entities, these sets represent the potential interactions.

3 Environment and Rules

The EASI model has already been applied to real applications, for an Agent
Traveler Information Server [21], and for the management of bus networks [2]. In
these systems, we use the expert system technology to manage the activity of the
environment. The mapping from EASI onto an expert system is straightforward:
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the knowledge base represents the set of entities, the rule base represents the set
of filters and the rule firing ensures the dynamicity.

The applications have been implemented with rule engines using the RETE al-
goritm [8]. In addition, EASI has been implemented within Madkit2, a multiagent
platform based on the Agent Group Role (AGR) model [7]. In Madkit, each mes-
sage is delivered by the kernel that manages the groups, roles and identifiers of the
agents. With our extension, an agent can communicate by two different means in
the same MAS: 1) it sends and receives messages thanks to the kernel; 2) it puts in
and perceives messages from the environment in which it participates.

The model we have described so far enables the agents to act on their own
perception channels to match their needs. It is sufficient for cooperative agents,
but the compliance to the potential rules of the environment is entrusted to
the agents. This is not sufficient for heterogeneous systems. For instance, in the
MarketPlace example, the seller a1 can add the following filter:
holds(f(a, {m}) → perceive(a, {m}) with
f4(a, {m}) = [Ps(m) = inform] ∧ [Ppr(m) ∈ Ppr(a)] ∧ [Pid(a1) = Pse(m)].

In this filter, a is a description, a1 is an individual. It “forces” the clients to
receive all a1’s special offers despite their initial filter(s), for example f2 which
triggered the perception of only the best special offer. In this section, we complete
the model in order to deal with this issue.

3.1 Origin of a Filter

We consider that the filters dedicated to the management of the MAS belong to
the environment. These filters are added either by a group of system agents, or
by an environment internal mechanism. This leads us to split the filters in two
categories, depending on their “author”: the environment, or an agent. Thus,
F = FE ∪FA, with FE the set of filters added on behalf of the environment and
FA the set of filters added by the agents. The author of a filter will be noted as
superscript, fe for the environment and fax for an agent ax.

In this way, the environment can add percepts to the agents, which will receive
messages that would not have been received otherwise. The filters are the rules of
the environment, they define the interactional politics of the MAS, for example a
standard transmission behavior for certain kinds of messages. The advantages of
this approach are (i) to enable the existence of the rules inside the environment
itself, and not external to it (by monitoring, for example), in order to regulate
the MAS by controling in real-time the actions instead of doing it a posteriori
and (ii) to unburden the agents of this task.

In order to provide an intuitive understanding of our model, we will build
up a new example as the model goes along to illustrate how the filters can be
used in this new context. We use the metaphor of a physical environment to
instantiate the model. We focus our example on the message transmission rules,
for cognitive agents. In this second example (Fig. 3), the agents – a1 to a4 – are
situated on a two-dimensional grid. To begin with, we only consider distance

2 www.madkit.org
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zone 1

a3

a1

a4

a2

zone 3

The messages are transmitted via f1

The messages can potentially be transmitted

The messages are not transmitted due to fN2

zone 2

Fig. 3. Example 2. The circles represent the delimitation implied by the environment
filters for the agent a1.

as the determining criteria. The filter of the environment induces a partition of
the space for each agent. The first filter manages proximity: the agents always
perceive the messages that are sent by agents close to them, e.g. a1 perceives
the messages from a2 as long as they stay at the same distance, and reversely a2
perceives the messages from a1. Let the agents have three observable properties,
Pid for their identifier, Px and Py for their position on the grid. The messages
have one observable property, Pse for their sender. d is the maximal distance at
which a message is always perceived. The filter of the environment is:
holds(fe

1 (a, {m} ∪ C)) → perceive(a, {m}) with
fe
1 (ar, {m}∪C) = [

√
(Px(ar) − Px(as))2 + (Py(ar) − Py(as))2 < d]∧ [Pse(m) =

Pid(as)], C = {as}.

3.2 Negative Filters and Priority

The filters put by the environment trigger the perception even if the agents do
not want to perceive it. To support the opposite case – the environment blocks
the perception –, we must be able to put negative filters, noted fN , which means
that when the filter holds, the concerned io is not perceived by the concerned
agent(s):

Definition 9 (Negative Interaction Filter). If a ∈ A, io ∈ IO, C ⊂ Ω,
fN(a, {io} ∪ C) = ∧i∈Ifa

[Pi(a) Rfa dfa] ∧i∈Ifio
[Pi(io) Rfio dfio] ∧ (∀e ∈

C ∧i∈Ife
[Pi(e) Rfe dfe]), holds(fN(a, {io} ∪ C)) → ¬perceive(a, Cact).

Let us continue the example. The second filter of the environment will be a
negative filter: an agent cannot receive a message sent from further than a spec-
ified distance: for example a1 will not be able to receive any message from the
agents in the zone 3. Let D be the distance from where on a message cannot be
perceived. The corresponding filter of the environment is:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Environment as Active Support of Interaction 97

holds(fe
N2(a, {m} ∪ C)) → ¬perceive(a, {m}) with

fN2(ar, {m}∪C) = [(Px(ar)−Px(as))2 +(Py(ar)−Py(as))2 > D2]∧ [Pse(m) =
Pid(as)], C = {as}.

Whether or not the agents perceive the messages sent from the intermediate
zone depends on their filters: the agents can add filters to focus their attention
toward particular interactions of interest.

Both the agents and the environment can add negative filters. The environ-
ment, for its regulation task, has to be able to prevent the perception of inter-
action objects, e.g. for security reasons or to ensure a ban. For the agents, the
negative filters enable them to control and limit voluntarily their perceptions.
In real life situation, when someone has no particular task to accomplish, he
is “actively” aware, which means he focusses his attention on what is going on
around. If there is a conversation around, he will overhear it. Yet, if he becomes
busy, he will focus straight on his current task, and thus reduce his perceptions
on what he has to do; the conversations around will not be heard. We give the
agents the same ability to act on their own percepts, not only in a positive way,
by increasing their awareness, but also in a negative way, by limiting their per-
ceptions according to their occupancy, will or needs. Removing their own filters
is not sufficient, because they may still receive messages via filters belonging to
the other agents.

We did not mention previously the relative priorities of the filters of the envi-
ronment and of the agents, because the filters of the one could only add percepts
to the others. Now that the effects of the filters can be contradictory, it is neces-
sary to introduce different priorities according to both the author of the filters
and the type of the filters. As we emphasize the regulation by the environment
to ensure the compliance with the rules of the MAS, the filters added by the
environment have to be stronger than those added by the agents: the prior-
ity of the environment filters is higher (Axiom 5), and the inference relation of
a higher priority disables those of a lower priority for every agent/interaction
object couple holding (Axiom 6):

Axiom 5 (Relative Priorities: Environment and Agents). ∀fe ∈ FE ,
∀fa ∈ FA, priority(fe) > priority(fa).

Axiom 6 (Conflict Resolution). ∀fx, fy ∈ F, a ∈ A, io ∈ IO, Cx, Cy ⊂ Ω,
priority(fx(a, io, Cx)) > priority(fy(a, io, Cy)), holds(fx(a, io, Cx))
∧ holds(fy(a, io, Cy)) → ¬holds(fy(a, io, Cy)).

This means that for every agent/io couple, at most one interaction filter is trig-
gered; and this filter is the one which has the highest priority.

To resolve the last ambiguous case, a conflict between two filters which have
the same priority, we ensure that a negative filter is stronger than a positive one,
i.e. the negative filter applies:

Axiom 7 (Precedence: Negative and Positive Filters). ∀fNx, fy ∈ F, a ∈
A, Cx, Cy ⊂ Ω, priority(fNx(a, io, Cx)) = priority(fy(a, io, Cy)),
holds(fNx(a, io, Cx)) ∧ holds(fy(a, io, Cy)) → ¬holds(fy(a, io, Cy)).
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(case) (A) (B) (C)

∧ �fe(a, {io}) ∈ FE ∃fe(a, {io}) ∈ FE ∃fe
N (a, {io}) ∈ FE

(1) �fa(a, {io}) ∈ FA × perceive(a,{io}) ¬perceive(a, {io})
(2) ∃fa(a, {io}) ∈ FA perceive(a, {io}) perceive(a,{io}) ¬perceive(a, {io})
(3) ∃fa

N(a, {io}) ∈ FA ¬perceive(a,{io}) perceive(a,{io}) ¬perceive(a, {io})

Fig. 4. In a particular context, the truth value of the perception of an interaction
object io by the agent a is determined according to the filters of the environment and
of the agents

With this new partition of the filters – between the environment and the agents
– and the introduction of the negative filters, we must study the different cases
of co-presence of conflicting filters in the environment. The perception (or not)
of the interactions will be determined according to the priorities. The table in
Fig. 4 sums up the different cases of absence and/or presence of filters added by
the environment and the agents.

In the previous example, if a1 wants to overhear a3 and a4, it will put the
following filter:
holds(fa1

3 (a, {m})) → perceive(a, {m}) with
fa1
3 (a, {m}) = [Pse(m) = (Pid(a3) ∨ Pid(a4))] ∧ [Pid(a) = Pid(a1)]
a1 will receive the messages from a3 (Fig. 4, case (A)(2)), but as long as

fe
N2 holds, it will not receive the messages emitted by a4 (case (C)(2)). If their

position change and the distance between a4 and a1 becomes shorter than D, a1
will begin to perceive its messages.

3.3 Undesirable Behavior

Finally, we study the case of conflicts between the agents. This may result from
undesirable behavior, or from poor design of the filters. In the case where there
is no filter issued by the environment (Fig. 4, case (A)), if the sole priority is
the one of the environment on the agents, an agent can block every filter of
the other agents by adding a negative filter generic enough to cover every agent
and every message, or inversely “flood” them with messages. In order to tackle
this problem, we introduce a particular kind of filter: the personal filters. The
personal filters are the filters whose author is the only potential receiver.

Definition 10 (Personal Filter). f is a personal filter iff ∃ax ∈ A, ∀a ∈ A, f ∈
FA, C ⊂ Ω, fax(a, C) = [Pid(a) = Pid(ax)] ∧ (∀e ∈ C ∧i∈Ife

[Pi(e) Rfe dfe]).

When an agent adds a filter for itself, it is a personal filter. More precisely,
personal filters trigger the perception (or not perception) of an io only for its
author. This is determined thanks to its identifier Pid. We note FAP ⊂ FA the
set of personal filters in the environment. In this way, we distinguish filters that
implicate only their owner from filters that implicate – exclusively or not – other
agents. In order to counter the threat of an agent putting filters to the detriment
of other agents, the personal filters have a higher priority than the others:
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Axiom 8 (Relative Priorities: Personal and Standard Filters).
∀fax ∈ FAP , fay ∈ FA \ FAP , priority(fax) > priority(fay).

This means that the agents personal filters overrule the filters they did not add
personally in the environment, except of course for the rules of the environment.
For example, if the agent a4 does not want a1 to perceive any messages, it will
put a filter such as:
holds(fa4

N4(a, {m})) → ¬perceive(a, {m}) with
fa4

N4(a, {m}) = [Pid(a) = Pid(a1)] ∧ [Psender(m) 
= null].
However, both the filters of the environment and the filters added by a1 will

overrule a4’s filter: a1 will continue to receive the messages emitted nearby thanks
to fe

1 , and it will also perceive the messages emitted by a3 (and eventually a4)
thanks to fa1

3 , which is a personal filter. That means that a4 cannot block a1
against its will.

This priority allows the agents to thwart other agents’ misbehaviors, inten-
tional or not. Thus, we can prevent an agent from blocking the standard behavior
of our model. When the filters are added, the environment checks that the pri-
ority given to the filter by the agent is compliant with this order, by detecting
whether the filter is personal or not. Depending on the politics of the MAS, the
filters which are not compliant with their standard level of priority are either
refused or corrected.

The priority levels of the different kinds of filters, according to their author
and nature, allow the implementation of a “natural” order of precedence: all
the agents must comply with the rules of the environment, then under these
mandatory rules, they define their own interactions and perceptions, and finally
they may perceive other solicitations. We emphasized in the introduction that
the awareness is the result of external stimuli, which are not chosen, and of
decisions of perceptions. In our model, the stimuli the agents undergo are those
carried out through the filters of the environment, while it can decide to focus
its attention by adding filters for itself.

In the following section, we introduce more complete examples of filters to
show how it is possible to modulate the interaction rules according to the pre-
vious definitions and axioms.

4 Example

In the previous examples, we focused on communication and message exchanges.
In this section, we provide an example of a situated multiagent system, where
software agents use different kinds of interaction. The aim is not to describe the
whole system, but to illustrate the flexibility introduced by the regulation of the
MAS by the environment via the EASI model. Hence, we describe in detail only
the interactional aspects of the MAS.

We consider a multiagent application with situated agents, i.e. localized agents
that cooperate in a decentralized way. The agents are positionned on a two-
dimensional grid. The characteristics of the observable properties of the entities
are presented in detail in Fig. 5. We have one category of agents A, which
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Notation Meaning Definition domain ∈ A ∈ IOM ∈ IOT ∈ OC

Pid identifier DidentifierA ⊂ N X
Pp position ([0 . . . w], [0 . . . h]) X X X
Pc capability {lift, carry} X
Pb busy {true, false} X
Ps subject {request, accept, private} X
Pse sender DidentifierA X
Pr receiver DidentifierA ∪ unknown X
Pd direction {N, NE, E, SE, S, SO, O, NO} X

Fig. 5. Summary table of the observable properties. ∈ A is a short notation for ∀a ∈
A, P �= null, which means that the agents belonging to A share this observable property.
Similarly, IOM and IOT are the sets of interaction objects, with IOM , IOT ⊂ IO, and
OC is the set of crates, OC ⊂ O. w and h are respectively the width and the height of
the grid.

means all the agents share the same observable properties: their identifier, their
position, their capability and whether they are busy or not. We define two types
of interaction objects. The objects of the first type IOM show their subject,
their sender and their intended receiver; those of the second type IOT show
their position and a direction. There are also crates OC in the environment, the
only observable property of these objects is their position. The goal of the agents
is to move all the crates to the edges of the grid. To move a crate, an agent with
the lift capability and another with the carry capability have to coordinate
together. The behavior of the agents is as follows: (1) it moves; (2) if a crate
is found, the agent has to contact the nearest agent with the complementary
capability (an agent has only one capability). This is achieved by sending a
message with the requested capability and the object position to the nearby
agents, which might answer by an “accept” message; (3) it is busy until the
object has been moved to an edge of the grid.

The rules of perception of the environment for the messages m ∈ IOM are
the following: spacially, d is the maximal range of perception of a message. This
is enforced via the rule fe

N1. The filters related to the perception are sumed up
by order of priority in Fig. 6. In order to ease the simulation, the environment
provides a default handling of the coordination messages: a message that has
“request” for subject will be perceived by every agent that has the requested
capability and that is not busy. There are two manners to create this behavior,
either by adding fe

3 , which follows strictly the previous textual description, or by
adding fe

N3′ and fe
3 ′, respectively forbidding an agent to receive messages when

it is busy and adding the perception of the “request” messages to the agents
that have the requested capability. The choice is significant, because although
for this particular context, the resulting behavior will be the same, the second
choice blocks all further possibility of message perception for the busy agents
(Axioms 5 and 6). Hence, we choose the first alternative: the “request” messages
are automatically handled, and by not specifying a negative filter, we allow them
to be overheard.
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filter pos neg
P

ri
or

it
y fe

N1(a, {m} ∪ C) = [d(a, ar) > d] ∧ [Pid(ar) = Pse(m)], C = {a1} X
fe
3 (a, {m} ∪ C) = [[Pc(a) �= Pc(ar)] ∧ [Pid(ar) = Pse(m)]

∧[Pb(a) �= false] ∧ [Ps(m) = “request′′], C = {ar} X
fe

N3′(a, {m}) = [Pb(a) = true] X
fe
3 ′(a, {m} ∪ C) = [Pc(a) �= Pc(ar)] ∧ [Pid(ar) = Pse(m)]

∧[Ps(m) = “request′′], C = {ar} X
fe
4 (a, {m}) = [Pid(a) = Pr(m)] ∧ [Ps(m) = “accept′′] X

fe
5 (a, {m}) = [Pid(a) = Pr(m)] ∧ [Ps(m) = “private′′] X

fe
N5(a, {m}) = [Pid(a) �= Pr(m)] ∧ [Ps(m) = “private′′] X

fe
N6(a, {t}) = [d(a, t) > 1] X

fe
7 (a, {t}) = [d(a, t) = 0] ∧ [Pb(a) = false] X

fax
8 (a, {m}) = [Pid(a) = Pid(ax)] ∧ [Ps(m) = “request′′] X

fax
N9(a, {m}) = [Pid(a) = Pid(ax)] ∧ [Pb(a) = true] X

fax
10 (a, {t}) = [Pid(a) = Pid(ax)] ∧∀o∈OC [d(a, o) > d] X

Fig. 6. Interaction filters, ordered by priority. “pos” means that it is a posi-
tive filter (holds(f(a, {io} ∪ C)) → perceive(a, {io})), and “neg” a negative filter
(holds(f(a, {io}∪C)) → ¬perceive(a, {io})). d(e1, e2) is the distance function between
the entities e1 and e2, if Pp(e1), Pp(e2) �= null.

The answer to this message is achieved by an “accept” message, which is “ad-
dressed” to the sender of the original request. Thus, the environment enables
dyadic interaction for the “accept” messages thanks to the filter fe

4 . Let us note
that thanks to fe

N1, there is no need to specify the distance criteria in the other
filters: since it has the highest priority, the other filters are momentarily dis-
abled for every couple agent/io that complies with its conditions. Furthermore,
the environment enables the agents to communicate “privately”, i.e. their mes-
sages cannot be overheard by other agents. If the sender tags its message as
“private”, fe

5 causes its perception by the specified receiver, and fe
N5 prevents

the message from being perceived by other agents. Let us note that it is also pos-
sible to temporiraly add or remove the filters concerning a particular behavior,
for instance the private messaging, and thus allowing the agents to send private
messages only during specific periods.

Contrary to the messages, the interaction objects of the second type (t ∈ IOT )
are localized and persistent, they are a kind of trace. If an agent finds several
crates, it will carry one to an edge of the grid, and on its way it will put in
the environment one trace every two squares, with the direction of the crates.
The traces are not subjected to the other filters, because it does not have the
requested observable properties (sender, subject...). Hence, we have to define
their management. The agents can perceive the traces only if they are in an
adjacent square, with fe

N6(a, t). The traces will automatically be perceived by
each agent (not busy) passing on their position thanks to fe

7 (a, t).
The basic interactional rules are enforced by the environment, so that the

agents only have to add filters concerning specific behaviors, adapted to their
strategies. For example, an agent ax may try to overhear the request messages it
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should not perceive because it is busy, or it does not have the wanted capability,
with fax

8 . We emphasized that we did leave the choice to the agent of whether
it should perceive messages when it is busy or not. If its choice is that it should
not, it can add the filter fax

N9 to forbid it. Finally, the traces are useful for the
agents if they are searching for crates. The corresponding filter is fax

10 : the agent
ax will perceive the nearby traces only if there is no crate in its direct range of
perception. These filters are managed dynamically, hence enabling the agents to
modify their interactional environment according to their needs.

This example shows how it is possible to design the rules of a both the MAS
and the agents, and how this can be modified, either statically at design time,
or dynamically at runtime. The designer only needs to foresee which properties
could induce an effect on the behavior of the environment, and thus should be
rendered observable.

5 Related Works

Some applications have substantiated the concept of awareness, and notably
of overhearing. For instance, in the context of teams of autonomous agents the
coherence of the team increases significantly thanks to the use of a protocol based
on overhearing [12]. Overhearing has also been used in several works to monitor
MASs, as in STEAM [11]. These systems highlight the usefulness of the concept
of overhearing, but their implementation using massive broadcast or subscription
limits their ability to be used. The built-up of awareness involves two phases,
the effective sending and the filtering. In broadcast based implementations, the
filtering is realized in every agent: each agent receives all the messages and has
to filter them. With our method, the filtering is done before the actual sending
of the messages.

Channelled multicast [4] proposes a focused broadcast, by means of dedicated
channels of communication. However, because of a publish and suscribe system,
it is still the sender which assumes the transmitting task. Furthermore, the more
specialized and thus the more close to the needs of the agents the channels are,
the more complex the system becomes. On the contrary, our model delegates
to the environment the transmission and enables picking up the interesting in-
teractions in the same environment. MIC* [9] is an agent formal environment
which represents interactions as Interaction Objects (IO). These IOs, once pro-
duced, are separate from the agents and managed by the environment. They
belong to Interaction Spaces (IS), in which they are propagated. The IS are
composable, according to their physical and formal location. However, in MIC*
the receivers are still passive in the choice of their communication, even though
the environment does play a role in the perception of the IOs.

Distributed environments like Javaspaces3 or LIME [13] are close to our sys-
tem, as they allow the sharing of objects or tuples. For example, LIME proposes
communication spaces that are dynamically shared according to their accessi-
bility. These communication spaces are tuple spaces built on the tuples of each
3 http://java.sun.com/products/jini/
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agents and reconstructed at each reading. However, Javaspaces does not allow
multiple template matching, and LIME does not assure the consistency of the
tuple spaces. We can also mention TuCSon, which is based on programmable
tuple-centres and enables to deal with coordination artifacts [16]. The artifacts
are the closest to our approach. However, though the artifacts are interesting
to manage indirect interactions via non-agent entities, it does not deal directly
with the treatment of the messages.

The electronic institutions [6] propose run-time verification of the interaction
protocols. This ensures a strict compliance with the specifications of the MAS.
However, only the “control” part is taken into account, the infrastructure is not
intended to also facilitate the interaction.

About the models, Weyns [20] proposes a complete framework for active per-
ception. However, the subject is treated from the viewpoint of the agents, and
not of the environment. This model does not include the problem of message
management, when the objective of our work is to propose a model that unifies
both the perception and the message management. Tummolini [17] defines the
concept of Behavioral Implicit Communication (BIC), within the framework of
cooperative systems for task achievement, as the set of every interaction that
can be observed in an implicit way, i.e. information conveyed by actions or com-
munications of the other agents. However, several properties are required to
fulfill BICs: the observability of the actions and their results, the ability for the
agents to infer the right information (and possibly an action), and the ability
for the agents to anticipate the effects of their own actions on the other agents.
This makes the framework difficult to use in real applications. Platon’s model
of overhearing [14] is the most generic to our knowledge, as it considers over-
hearing independently of the domain of the application. The introduction of the
T-compound as design pattern permits a graphical representation of overhearing
to model the interactions, based on existing works in the field of object com-
puting. Platon has recently extended his model to over-sensing [15]. The agents
have soft-bodies that have public states, which are verified (both in visibility
and accessibility) by the environment. The modifications of the public states
are spread throughout the environment. However, the model doesn’t mention
the case of the messages, and even if the agents are provided observability, the
model does not address the question of the exploitation of the environment by
the agents. In this sense, our works are complementary.

6 Conclusions and Future Directions

We have introduced EASI and drawn its main features, such as flexible manage-
ment and regulation of the MAS interactions. Our model provides a common
channel for the interactions, and the primitives that enable the agents to mod-
ulate their perceptions, both in positive and negative ways. It also provides a
structure of regulation of the interactional politics of the MAS, by putting to-
gether environmental rules, personal choices and context-aware perception and
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transmission. To improve the regulation part of our model, we plan to explore
the issue of the ownership and rights on filters and objects.

EASI can be used to support awareness, by enabling both external stimuli
managed by the environment and an active control of its perceptions thanks to
the filters. This implies an increase of potential perceptions of interactions, and
we intend to take advantage of this modeling of awareness in order to work on
opportunistic behaviors. The modeling presented in this paper may also lead to
unexpected situations, which will have to be studied closely, as well as mecha-
nisms to detect and prevent them. On the implementation side, the observability
of the properties and the filtering process can present problems for large agent
societies, which will have to be discussed.

By enabling the agents to choose their interactions and foci, we also extended
their autonomy. The next step is to propose an ontology of the available inter-
actions in the environment in order to propose to the agents entry-points to the
systems. We also intend to study more closely the effects of EASI on the proto-
cols, notably how an agent can take advantage of the information perceived and
how it can compose its interactions in this framework.
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Abstract. Tag interactions are agent interactions that complement and
differ from speech act communication models. Tags are public informa-
tion that agents expose to others in the system to allow two types of
interactions. Tag monitoring interactions let agents observe the tags of
others actively. Tag fortuitous interactions make agents realize the tag
of others with unrequested and application-dependent messages. In this
paper we model tag interactions based on the agent environment and
computational bodies to enact, maintain, and regulate their execution.
We discuss the model and we identify further issues in the current state
of the research. An example application is described in detail to show
the potential of introducing tag interactions.

1 Introduction

In Multi-Agent Systems (MAS), interactions are usually message-passing be-
tween two agents, so that the main research activities deal with communication
languages, interaction protocols, and their exploitation (e.g. negotiation, argu-
mentation). However, systems capabilities appear limited in comparison to inter-
action opportunities in human agencies [1]. The potential for interaction diversity
of software agents seems underexploited, although some situations can leverage
interaction schemes with different semantics, such as indirect (e.g. stigmergy,
see [2] for a survey), implicit [3], or opportunistic interactions [4]. Typically, one
can conclude a friend is ill just due to her appearance, even though she does not
communicate her state intentionally. How can we model such an interaction?
To this end, we exploit the idea that human-beings do not only communicate
through their languages, but also through their bodies. We call this type of in-
teraction tag interaction and propose to endow software agents with an explicit
computational body that exposes observable information labeled as tags.

The management of tag interaction based on a software body differs from
message-passing techniques. The source agent is not always aware of the infor-
mation it expresses and it cannot always be considered as the ‘operational sender’
(e.g. my ill friend). Similarly, agents that receive information via tag interaction
do not always know they play the role of receivers (e.g. realizing my friend is
ill). Consequently, tag interaction requires an active entity that allows and exe-
cutes such situations by dealing with the software body. The scope of this entity
must encompass all agents that can participate in tag interaction and we think a
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natural candidate for this function is a computational environment. This paper
describes how such an environment can support tag interaction with intuitive
examples from social and natural sources, and a detailed example application
for fault tolerance.

Section 2 details our terminology and demonstrates that an environment is a
proper abstraction for tag interaction. Section 3 then exposes our formalization
of the notion of tag interaction and environment. Section 4 exploits this formal-
ization to describe environmental mechanisms. Section 5 exposes an example
application devoted to an agent-based fault tolerant load balancing problem.
Section 6 discusses the current state of our work, and section 7 presents future
evolutions.

2 Tag Interaction and Environment

2.1 Software Agent for Tag Interaction

In the literature, an agent is an autonomous computational entity with interac-
tive capabilities [5,6]. Our definition hereafter is related but separates explicitly
the interactive nature of agents from their internals as shown on Fig. 1.

A software agent is an autonomous problem-
solving entity endowed with an explicit bound-
ary named softbody that exposes:

Sensors to receive information from the en-
vironment

Actuators to send information to the envi-
ronment

A public state of the agent, observable in the
environment

Agent
Internals

Softbody

Sensor Actuator

Public State

Fig. 1. A Software Agent

The problem-solving capabilities of the agent internals refer to the various
existing agent architectures, like BDI [7] and KGP [8]. Internals are usually hid-
den from other agents, ‘encapsulated’ in a boundary that we name the softbody
of software agents. This computational body features sensors and actuators for
interactions with other agents and entities in the MAS [5].

In addition, the softbody exposes a public state of the agent. A public state
contains information about the agent that can be sensed by others in the environ-
ment. Concretely, the public state is a list of variables named tags whose values
reflect agent internals. The contents and types of information in the public state
can be configured by the designer or dynamically by the system to define what
can be observed about each agent. For example, we can infer in a discussion that
someone may be lying when we observe her to blush, i.e. her public state exposes
a change to a ‘red skin color’. On the other hand, system designers might choose
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to prevent such an observation in a software auction system to avoid collusion
means by body signals [9]. Public state content information can indeed influence
agent reasoning processes and consequently their interactions.

The separation between the internals and the softbody is an architectural
mean to preserve the autonomy of agents. Interactions are performed through
the softbodies as interfaces, so that sending and reception of information are
decoupled from internal process. Agents can decide autonomously in their inter-
nals how to process information, and which information to process or to ignore.
External control is screened by the softbody, thus limited to the public state.

In the remainder of the paper, we will now refer to software agents simply as
agent for readability concerns, although our model does not pretend to generalize
to any kind of agent.

2.2 Tag Interaction

Definition. We define tag interaction as follows;

Tag interaction is a set of mechanisms that models interactions based on
the public state: (a) the expression of public state, (b) the sensing of public
state, and (c) the monitoring and fortuitous propagation mechanisms.

Tag interaction mechanisms expose and sense public states with (a) and (b).
We distinguish two types of propagation mechanisms to describe different situa-
tions in (c). Tag monitoring interaction is related to observation, when an agent
collects information about others. This active inquiry mode is initiated by an
agent and contrasts with the ‘passive’ reception mode of tag fortuitous interac-
tion. This second type functions as a call-back mechanism: An agent receives
information about the public states of other agents without explicitly requesting
for it. For instance, one can feel a presence in a dark room through senses, even
though we do not request this information in the first place. Fig. 2 depicts the
two types of tag interaction.

Observer
Agent

Observed
Agent

Passing
Agent

Observed
Agent

Fig. 2. Left: Tag monitoring interaction. Right: Tag fortuitous interaction.

The left part of Fig. 2 shows the observing agent acting (e.g. looking at) so
as to sense the public state of the observed agent. The right part shows that
the public state of an observed agent is spread out to the sensor of any ‘passing
agent’ (e.g. mobile). We argued in section 1 that these two situations need an
active third-party entity to perform the information flows represented by the
arrows of the two above figures, and a candidate is the environment.
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Environmental Requirements. Observing an agent means the public state
is ‘readable’, such as on the left of Fig. 2. But in usual agent approaches, reading
actions are realized by contacting the observed agent that consequently becomes
aware of this observation. In a discussion, we might however talk and simul-
taneously observe interlocutors to detect clues such as attitudes. Observation
requires the observing agent to receive information, without requesting for it to
the observed one. The environment is a third party that can provide mechanisms
to perform this function.

Tag fortuitous interaction emphasizes the previous argument, since no agent
triggers any information transfer, as on the right of Fig. 2 where the environment
delivers public state information. A typical situation is when one fails to meet
a friend. When the friend is eventually nearby, sensing her presence can be
thought of as the fortuitous reception of a ‘presence message event’ delivered by
the environment on change of the situation.

Finally, tag interaction requires an environment as a regulating entity [10].
The public state is a feature of the softbody that lets malicious agents fake
attitudes or change the state of other arbitrarily if no regulation is enforced. As
a general example, the public state ‘position’ should be modified consistently to
avoid odd agent movements and collisions that should not occur in a simulation.
The environment can enforce correctness of public states against system rules.

To summarize, tag interaction requires from the environment the following
support, and our model aims at providing them.

– Enact monitoring interactions
– Enact fortuitous interactions
– Regulate interactions

This support needs to be provided transparently to avoid introducing into the
agent any complexity related to the environment responsibilities. The model
abstracts this issue by only specifying what are the environment responsibilities.
Implementation issues lie at another level of analysis. The environment might be
centralized or distributed depending on application requirements. This matter
is further discussed in section 6.

2.3 Environment Model

Our definition of environment specializes a generic version [10], notably based
on the work of Russell and Norvig [5], and Ferber [6]. It focuses on the salient
characteristics of the environment for tag interaction.

The environment of a MAS is the entity where agents exist and that:

– Maintains the system topology
– Maintains mapping information of the agent population to the topology
– Performs tag interaction mechanisms
– Defines and enforces tag interaction rules
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The environment is a stateful entity that defines and maintains a topology of
the system, which can be spatial or abstract as in many simulations [11], net-
work domains, file systems, or web-sites [12]. It can be either centralized or de-
centralized, depending on application requirements. The environment maintains
information about agent situations in the system topology to manage informa-
tion delivery and regulate their interactions. This information is only related to
softbodies. That is, the environment does not need to deal with agent internals,
since they are encapsulated into agents and an access by the environment to in-
ternals would violate the autonomy assumption. The environment also mediates
tag interactions, which refers to public state evolution and change notification.
Furthermore, the environment applies rules in the MAS to enforce certain public
state values. Rules define ranges of possible values, so that system states remain
consistent for the application. Rules also define how public state information is
spread out in the system, for instance by defining a range of interaction [13,14].
These rules allow specifying change notification strategies to control the amount
of tag information that is exchanged in the system (which can cause a significant
cost variation as illustrated with the example application of section 5).

The definition meets the requirements we defined for tag interaction.

– Interaction mediation enacts an observation framework whereby the envi-
ronment delivers observable events.

– Fortuitous events delivery is configurable by specific rules.
– Regulation is enforced by the rules while mediating interactions.

We notice that the environment has no deliberative capability and no decision
power. The environment merely accomplishes its responsibilities in strict com-
pliance with rules defined by design.

3 Formalization

3.1 Agent

Our formalization of an agent follows from the definition of section 2.1:

Agent = (ψ, ϕ, INF ) , where ϕ = (S,A,Ps) (1)

First in this formula, ψ is the internal state of the agent, and ϕ is the state of
its softbody. A pair (ψ, ϕ) then represents a state of the agent. ψ ranges over
the state space Sψ, and ϕ ranges over Sϕ. The softbody ϕ is further developed
into a 3-tuple where S is the set of sensors of the agent, A the set of actuators,
and Ps the public state, which can be a set of variables, e.g. in predicate logic.

The last element of the formalization is INF , a set of two reaction rules
INFψ and INFϕ to determine the evolution of agent states (ψ, ϕ) on change of
internals or softbody respectively. For any ψ and ϕ:
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(ψ, ϕ) and ψ → ψ′

ϕ → ϕ′ INFψ (2)

(ψ, ϕ) and ϕ → ϕ′

ψ → ψ′ INFϕ (3)

The operational semantics of INFψ expresses the evolution of the state (ψ, ϕ)
after the evolution from ψ to ψ′. The result of INFψ is the evolution of the
softbody to reach ϕ′. The agent final state then becomes the pair (ψ′, ϕ′). For
instance, when an agent wants to open a door, it first intends (ψ evolution) and
then acts (ϕ evolution) to complete its intention. INFϕ expresses similarly the
evolution of internals due to the evolution of the softbody, e.g. input on sensors.
INF operators explicate how internals and softbody are linked by a cause to con-
sequence relation. What is modified along the evolution is application-dependent
and relies on instances of the model.

3.2 Environment

Our formalization of the environment follows from the definition of section 2.3:

Environment = (Ω, Φ, TRANS) (4)

A complete state of the environment is a pair (Ω, Φ). Ω is a 2-tuple, representing
the environment internals:

Ω = (T opology,Rules) (5)

where T opology describes the structure (possibly dynamic) of the system, e.g. the
ground in traffic simulations or the hyperlink network of a web-site [12]. Agents
are situated in this topology to define their neighborhood. Management of tag
interactions by the environment is performed according to this topology. Rules
is the set of rules that define how the environment executes agent interactions.

Back to (4), Φ =
⋃

i ϕi is the set of references to softbodies in the system. The
environment exploits softbodies to serve the population of agents (e.g. informa-
tion delivery) and to enforce system rules by imposing environmental regulation.
The regulation lets agents control their softbodies in a range of acceptable states
defined by environment rules over Sϕ. A softbody is consequently owned and
controlled by an agent, while the control is regulated by the environment.

We finally introduce TRANS, a set of reaction rules TRANSΩ and TRANSϕ

to model the regulated interaction mechanisms of the environment with agent
softbodies. For any Φ and Ω:

(Ω, Φ) and Ω → Ω′

∃A ⊂ Φ : ∀a ∈ A, ∃(ϕa, ϕ′a) ∈ S2
ϕ : ϕa → ϕ′a TRANSΩ (6)

(Ω, Φ) and A ⊂ Φ : ∀a ∈ A, ϕa → ϕ′a

Ω → Ω′ TRANSΦ (7)

From an environment state (Ω, Φ) and an evolution of the internals Ω to Ω′,
TRANSΩ causes the set of softbodies Φ to evolve, so that for softbodies in the
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subset A = (a1, ..., an) ∈ Φn, the transformation TRANSΩ entails all ϕi to
evolve to some ϕ′

i for each ai. Similarly, TRANSΦ models the converse transfor-
mation. The subset A depends on the T opology and typically contains a ‘neigh-
borhood’ of agents defined by application-dependent needs, such as an Euclidean
or social (same taste, etc.) distance.

4 Environment Mechanisms for Tag Interaction

This section relies on the formalization to describe the mechanisms of the envi-
ronment in tag interactions.

4.1 Agent Influence on the Environment

When an agent intends to execute an action (i.e. change own public state or
observe) in the BDI sense [7], its internals evolve from ψinit (intention selection)
to ψact (intention attempt). The agent is initially in a state (ψinit, ϕinit), so that
the change of internals causes the softbody to evolve due to the INFψ reaction
rule. The softbody consequently evolves to ϕact:

(ψinit, ϕinit) and ψinit → ψact

ϕinit → ϕact
INFψ (8)

The modification of the softbody entails a reaction on the environment with the
TRANSΦ rule, from Ωinit to Ωcheck:

(Ωinit, Φ) and ϕinit → ϕact

Ωinit → Ωcheck
TRANSΦ (9)

The environment then checks whether its new state is valid according to applica-
ble rules. If so, it continues the action by propagation of the effect to other agents
(see sections 4.2 and 4.3), and it completes the process by informing the source
agent. A successful action entails Ωok. Success is observed with the softbody
that becomes ϕok under the application of TRANSΩ.

(Ωcheck, Φ) and Ωcheck → Ωok

ϕact → ϕok
TRANSΩ (10)

Fig. 3 shows the case where a public state is turned from ‘white’ to ‘black’
successfully.

In case rules oppose the intention of the agent, the environment evolves from
Ωcheck to Ωnok and counter-balances the agent attempt.

(Ωcheck, Φ) and Ωcheck → Ωnok

ϕact → ϕfail
TRANSΩ (11)

Fig. 4 shows a case where the intention of the agent to turn its public state
to black is not committed. Formula (11) follows formula (9) and cancels the
action of the agent before its occurrence in the system (e.g. if one wants to push
a wall, the body does not move). In the end, the softbody influences back the
agent internals with INFϕ to ‘report’ the opposition of the environment. In both
cases, the execution follows the sequence INFψ , TRANSφ, TRANSΩ, INFϕ.
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Environment

:
“Turn black”

Environment

:
Done

Ok “Agent
Public
State

is black”

Fig. 3. Environment validates and com-
mits the influence

Environment

:
“Turn black”

Environment

:
Failed

Nok

Fig. 4. Environment prevents the influ-
ence

4.2 Environmental Effect on Agents

The environment acts on agents with the mechanisms described in the previous
section. However, the effect of the environment on the public state cannot be
overruled by agents in the first place, so that the sequence of reaction rules
differs. With the same notations as before:

(Ωinit, Φ) and Ωinit → Ωact

ϕinit → ϕupdate
TRANSΩ (12)

The environment acts on the softbody that consequently evolves to ϕupdate,
representing either a change of public state (Fig. 5) or an observation received
on sensors. Then, the softbody informs its agent internals:

(ψinit, ϕinit) and ϕinit → ϕupdate

ψinit → ψupdate
INFϕ (13)

In this rule, the agent cannot compensate yet the effect on the public state. Such
a situation is shown on Fig. 5. The public state of the agent turns from white
to black state under environmental effect and the agent internals are informed.
Agents can however react afterward in autonomy to either oppose or ignore the
environmental effect. Typically, the agent can take subsequent actions to modify
the environment, and such behaviors are governed by the same regulation se-
quence as in section 4.1. We can illustrate such situations with someone entering
a river stream. The stream has an overwhelming strength at first and it carries

Environment
“Turn black”

Environment

: “My state
turned black”

Fig. 5. Environmental effect on the agent public state
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the swimmer downstream (assuming the public state contains the position of the
agent). In reply, the swimmer can try to oppose the stream and may succeed in
crossing it if the swimming abilities and strength are sufficient.

4.3 Public States Spread Management

Given an agent, three types of events imply a spread of the public state in the en-
vironment, namely modification of the public state by the agent, environmental
dynamics, and modification attempts on the agent public state by other agents
through the environment. Fig. 6 illustrates the case where an agent modifies its
public state (left part). Validation of the modification by the environment (cen-
tral part) is followed by the publication of the resulting state to agents in the
neighborhood defined by the topology (right part). We describe hereafter how to
process the public state spread management in the three aforementioned cases.

Environment

Ok

Environment Environment

Inform:
“Agent
Public State
is black”

Fig. 6. Public State Management from left to right: the top-left agent modifies its
public state; the environment validates the change; the change is spread to neighbors

Agent modification. Each agent controls its softbody and can modify the
public state, under regulation by the environment. The procedure of modifica-
tion is initially the same as the successful agent influence on the environment
detailed in section 4.1. The sequential application of formulas (8) and (9) mod-
ifies the public state of the agent and validates it by the environment. Then,
acknowledgment of the conformance of the new public state is performed with
the publication of the modification in the neighborhood:

(Ωcheck, Φ) and Ωcheck → Ωok

ϕ
aϕ

act → ϕ
aϕ

ok , ∃A ⊂ Φ \ {aϕ}, ∀a ∈ A, ϕa → ϕa
news

TRANSΩ (14)

The neighborhood A is included in the set of softbodies Φ\ {aϕ}. Each softbody
in A receives a notification on its sensors about the change ‘ϕact → ϕok’ of aϕ

(softbody of the agent that changed). Formula (14) is a generalization of formula
(10) that only stated the successful completion of public state change without
publication (case where the agent is alone in the system).
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Environmental dynamics. Environmental dynamics apply to subsets of agents.
Typically, Archimedes’ Law applies to agents under water in a simulation, while
a clock interrupt to represent time concerns all agents in the system. The appli-
cation of environmental dynamics on public state follows the procedure of sec-
tion 4.2. Each dynamics corresponds to an environmental rule set that targets a
particular type of public state variable. If p in the public state of a softbody is the
target of a rule, p is assigned a new value p′ after application of the reaction opera-
tor TRANSΩ. Environment and softbody are consequently updated, and the new
value p′ is spread in the system. The corresponding formula is a generalization of
formula (12) that modifies all softbodies, similarly to (14).

Attempts by other agents. When an agent intends to act on another agent
to modify its public state (e.g. push an agent to change its position), the interac-
tion is mediated by the environment. The procedure begins with a source agent
that intends to act on the public state of a target agent. The intention leads to
modifying the softbody with INFψ and it entails an effect on the environment
with TRANSΦ. If the action is authorized in the system, the environment re-
action is three-fold by applying the action to the target agent, publishing the
action to other agents, and sending an acknowledgment to the source agent:

(Ωcheck, Φ) and Ωcheck → Ωok

ϕs
act → ϕs

ok, ϕt → ϕt
changed, ∃A ⊂ Φ \ {as, at}, ∀a ∈ A, ϕa → ϕa

news

TRANSΩ

The neighborhood A is included in Φ \ {as, at}, where as is the softbody of
the source agent and at the one of the target agent. In the end, each softbody
informs its internals with INFϕ, so that agents are informed about the action.
In particular, the target agent can react to this action.

5 Tag Interactions Applied to a Fault Tolerance Scenario

In this section, we describe an agent-based application with ‘classical’ and tag
interaction approaches. The application is a load-balancing scenario that requires
a fault tolerance mechanism to support the activity of the system. We detail the
application, the two approaches, and a run of the system where fault tolerance
is required in the case of ‘agent death’ [15].

5.1 The Load-Balancing Scenario and a Classical Approach

A client (e.g. the user) submits a set of tasks to the system. The role of the system
is to perform the tasks and to report the results to the client. All tasks have same
importance, they are independent, and they must all be completed. In other
words, we suppose that tasks are not ordered and there is no time constraint
to complete them. The base architecture of this scenario is a repository where
clients submit their tasks and wait for the results. The repository is an indexed
queue where tasks have three exclusive states, namely todo, doing, or done.
The system must perform the tasks marked todo, signal tasks under process
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Task Allocation

3W2W1W

S

Repository

Fig. 7. Supervisor-worker approach to
the load-balancing problem

Receive task

Inform supervisor

Perform task

Fig. 8. Internal state cycle of worker
agents. The semantics of the arrow is the
transition from one state to the other,
once the associated action is completed.

with doing and the identifier of the processing unit, and mark completed tasks
with done so that the client can take them. The index of the queue points to
the next task marked with todo. The index approach is mainly introduced as
a mean to simplify the task selection process and to ensure mutually exclusive
access to tasks (necessary in the tag-based approach). Different elements that
access the repository can only choose to perform the task pointed by the index
(which is then atomically updated to the next task to be done).

A classical approach in MAS is a supply-chain where a supervisor agent del-
egates the tasks in the repository to worker agents, collects the results, and
updates the task state. The delegation by the supervisor is the load-balancing
mechanism of this approach: Tasks are allocated to available workers. The usual
schema of this application is depicted in Fig. 7. Worker agents interact with the
supervisor to receive tasks and return their results. Their internal state cycle is
shown on Fig. 8. A typical run of the cycle is to receive a task, do it, and inform
the supervisor about the result.

A typical problem in this application occurs when a worker fails. Without
any specific mechanism to deal with this issue, the supervisor agent may wait
indefinitely for the completion of the task, while the worker agent is ‘dead’,
i.e. the underlying process anomalously stopped. One solution to this issue is
to introduce timeouts. Each delegation of a task has a rendezvous timeout by
which the worker agent must finish the task. Beyond the timeout, the supervisor
considers the worker has encountered a problem and cannot complete the task.
The task is then assigned to another worker.

Some problems of this approach are however the supervisor failure point and
the limited flexibility. Distributed computing techniques exist to recover from
supervisor failures (e.g. redundancy with the ‘primary-backup’ architecture [16])
but they maintain a centralization point that may cause performance drops in
case of failures (replication cost, recovery time, etc.). Workers cannot interact
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directly to recover locally from some issues without the supervisor. The flexibility
of a MAS approach can be improved relatively to these issues. Other issues such
as the failure of the repository are not considered in this example.

5.2 Tag Interaction Approach

The reason for using tag interactions in the load-balancing scenario is to improve
the flexibility of the application by a more balanced approach. Tag interactions
allow removing one failure point such as the supervisor role by extending the
capabilities of workers with adequate tags and sensing strategy.

Fig. 9 shows the system workers and their tags. Sensors and actuators on the
softbody are simply message boxes to communicate in the environment and they
are not represented for clarity reasons. Workers are endowed with two types of
tags in their public state. Ref is a reference to the task the agent is executing. ECD
(Expected Completion Date) indicates the time by which the worker declares to
complete the task it is performing.

Task Allocation

Repository

W 32W1W

Environment

Fig. 9. Tag interaction approach to the
load-balancing problem

Look around

Drop result

Perform task

Update tags & repository

Get task Take over task

Fig. 10. Internal state cycle of worker
agents with tag interactions

The internal state machine of the workers is more complex due to the removal
of the supervisor role. Fig. 10 shows a cycle with a disjunctive branch. Workers
start by ‘looking around’ the tags on agents in their neighborhood and the state
of the repository. If all ECD tags are future dates, the worker gets a new task
from the repository. If an ECD tag is past and no other agent has signed up in the
repository for the corresponding task, the worker takes over the task by reading
the Ref tag1 and updating the repository with its identifier. Alternatively, a task
in execution by a neighbor (doing state) is selected if the neighbor is ‘unreadable’
(e.g. hardware error). The next step in the cycle is for the worker to update its
own tags to let others know about its current state. The worker then performs
the task and drops the result in the repository.
1 We suppose every access to tags is mutually exclusive.
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The environment is explicitly represented in this version of the system. Its role
is restricted to the support of tag monitoring interactions. Other mechanisms
are not used in this scenario (fortuitous interactions would require adapting
and extending the worker cycle). The environment is decentralized over the ma-
chines that host the system. The different parts are synchronized dynamically
with their adjacent parts in the environment topology similarly to [17]. Failure
of parts of the environment only prevents workers in these parts to interact,
while other workers can continue their tasks. Such environment can rely on a
distributed event notifier adequately sophisticated to fulfill the requirements for
tag monitoring interactions.

Notice that such a tag interaction process is arguably very costly if the envi-
ronment is to publish any change to all workers in the system. This is the reason
why the topology of the environment has to constrain the spread of change publi-
cation by the definition of the worker neighborhood. We chose to place, e.g., two
agents in the neighborhood of each worker (we do not aim to study further the
influence of this parameter at this stage of the work). The environment publishes
the public state change of a worker to the two agents in its neighborhood, which
significantly reduces the theoretical communication cost of these tag interactions
from O(n2) to O(n), where n is the number of workers.

5.3 System Run with Fault Tolerance

Tag interactions allow decentralizing the fault tolerance aspect of the application
as can be observed in the following run of the application. Initially, the client
places three tasks (t1, t2, t3) in the repository and there are two workers in the
system (w1 and w2). Fig. 11 represents a run where w1 fails and w2 exploits the
tag information to recover the failure. Each interaction in this example follows
the trace pattern INFψ , TRANSφ, TRANSΩ, INFϕ presented in section 4.1
(influence of agents on the environment).

The worker w1 looks around for tags, but does not notice any problem (initial
stage), so it gets t1 and starts performing it with a public state (Ref, t1) and
(ECD, d1), where d1 is a date in the future. The second worker w2 does the same
and performs t2 with the corresponding public state where d2 > d1. During the
performance, w1 fails and w2 completes its current task. The worker w2 starts a
new cycle and looks around. As d2 > d1, w2 can deduce that w1 is dead, so that

: todo3t

: todo2t

: todo1t 1: doing, W1t 2: doing, W1t

: done2t : done2t

: done1t

W 2 2W W 21W

Environment Environment

: todo3t

2: doing, Wt2

Environment

: todot3

Environment

: doing, Wt3 2

W 2W 1 1W 1W

4

Ref:
ECD:

Ref:
ECD: ECD: d

Ref: t 1
1

1
3

1Ref: t
ECD: d

Ref: t
ECD: d

3
ECD: d

2
2

Ref: t

1

Ref: t
ECD: dECD: d

Ref: t

1
1

Fig. 11. Sequence of system states in the considered run
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it takes over the task t1, updates the identifier in the repository, and performs
the task. In the last cycle, w2 looks around and, as no problem exists in the
neighborhood, it performs the last task t3. The work request is then completed,
despite one fault that has been automatically recovered.

6 Discussion

6.1 Applications

A criterion of an application that lends itself to tag interactions is observation.
If observation is an essential characteristic of agents in an application, then tag
interactions can be relevant. The load balancing scenario presented in section 5
shows how tag-based observation can contribute to the flexibility of software
that relies on more classical schemes (e.g. the supervisor approach).

Applications that could leverage tag interaction are first simulations that need
realistic interaction patterns encountered in nature. In particular, the environ-
ment plays an important role in simulations and the introduction of tag inter-
action can rely on extending existing work. Beyond simulation, tag interactions
are useful in some electronic market types, where interaction opportunities are
a critical factor. Auction systems (see [18] for a survey) and normative agencies
such as Electronic Institutions [19] are active research areas that rely explicitly
on direct interactions, and tag interaction can introduce more flexibility. We de-
scribed an application to show such a flexibility, and tag interactions contribute
positively to the system performance [20].

6.2 Present Issues

Various improvements can be applied to the current model of tag interaction.
In previous work, agents could interact with others and objects [21]. Although
the present paper focuses only on agents, the introduction of the softbody allows
future work to exploit and generalize the approach to objects, where an object is
assimilated to an ‘empty softbody’, i.e. without agent internals. In such a case,
the public state would not reflect agent internals but an interface to handle the
object, as with coordination artifacts [22] or the interface of web services. An-
other extension is to deal with simultaneous and concurrent events in the system,
whereas we currently treat actions in sequence. In fact, these issues have been
discussed for many years [6,23], and we leave them open for the moment. One
consequence is that current implementations of our model feature a centralized
component for the environment, whereas MAS would rather leverage distributed
approaches. The model abstracts distribution issues for system design as it seems
more convenient first to specify a solution by defining the responsibilities of the
environment, and then to analyze an appropriate implementation. The work of
Weyns et al. seems an appropriate base solution, where ‘pieces’ of environment
are maintained and synchronized when required [17].

Finally, the issue of environment regulation deserves further studies on how
to specify and implement rules. In particular, the issue of ‘conservative rules’ (in
a physical sense) seems to be powerful means to control the system entropy.
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6.3 Related Work

Castelfranchi described the Behavioral Implicit Communication (BIC) to ex-
plain why agents can communicate and coordinate by acting instead of using
languages [24]. For example, an escaping prey ‘communicates’ its position to the
predator only by moving, when it would prefer avoiding it. However, the prey
is not explicitly the sender of messages about its position in the sense of usual
Agent Communication Languages, i.e. it has no mental attitude of a sender.
BIC explains this situation by identifying a power of observation that allows the
observer to ‘pull’ messages. Even though the prey does not communicate its po-
sition, the predator fetches the information by observation. The environment has
been related to BIC as the source whereby observers can get information about
others. The further stage we aim at in this paper is to embed the observation of
agents (the public state) in a concrete interaction model, which relies explicitly
on the environment.

We propose to exploit embodiment in tag interaction among machines, and
thus to allow software agents to use their body and information about others.
Our proposal can be compared to the position of Kushmerick [1], with more em-
phasis on a model that can be engineered and the environment. Wrapper agents
are similarly interfaces to legacy programs or they add some functionalities such
as code mobility. Such wrappers differ from entities that reflect the state of the
wrapped entity, so that we think they differ from the softbody. The KGP model
of agency is implemented with a stateful body that features sensors and actu-
ators [25,8]. The body collects sensed information to feed the agent knowledge
base about the world. Such state is complementary but differs from our public
state which exposes information about the agent itself to other agents in the
system, thus offering a foundation for a tag-based reflexive architecture.

The public state is related to the ‘tags’ proposed by Holland in his theory
of complex adaptive systems [26]. This theory has been exploited in the work of
Hales in biologically-inspired systems [27]. The public state is another version of
the tags. The essential difference with the work of Holland and Hales is that the
public states is an attempt to use tags as an engineering element in the design
of MAS.

Software environments have been considered in various work to mediate and
control interactions. In particular, the coordination artifacts (CA) of Ricci et
al. allow building such environments [28]. Engineering environments with CA
populates MAS not only with agents, but also with artifacts that mediate in-
teractions among agents. Although CA can provide an engineering approach to
address tag interaction to some extent, we think CA cannot cover the notion
of a body. The Agent Coordination Context of CA shares similar concepts with
the softbody [29], but the ACC is an interface that is lent to agents during in-
teractions, whereas the body belongs to the agent architecture. This difference
is important in open systems, where designers want to build their own agents.

Tag interactions are related to tuple spaces and blackboard architectures,
which are two notable technologies that are related to the environment [30,31,10].
Tag interactions differ however from these models since the notions of ownership
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of public state, topology, and regulation by the environment of the possible inter-
actions are missing in tuple spaces and blackboards. In addition, tag interactions
rely on dynamics of the environment to perform tag monitoring and fortuitous
interactions. Tuple spaces and blackboards are usually passive entities that have
no proper dynamics. One exception is however the ‘tuple centers’ introduced
with the aforementioned CA.

Finally, tag interactions are related to the interaction models based on stig-
mergy, such as the pheromone and field infrastructures [13,2]. These interaction
models are also supported by the environment. The main difference with tag in-
teractions is that stigmergy relies on entities (pheromones, fields) that can evolve
independently from agents, whereas tag interactions rely on the softbody that is
part of agents. Once a pheromone is produced in the environment, its evolution
is loosely coupled with the agent, e.g. a pheromone remains in the system, even
though the agent is terminated. The softbody is instead strongly coupled to the
agent and serves to expose relevant and up to date information.

7 Conclusion

In this paper, the environment in MAS is seen as a solution to support tag
interaction. The environment provides an adequate abstraction to describe the
mechanisms involved in tag interaction and to lead to an implementation frame-
work. Also, tag interaction exemplifies a category of applications that requires
an environment as first-class entity. We think that the connection between tag
interaction and environment is an indication that future development of inter-
action theories should rely increasingly on the environment as a key element.

In future work, we aim at relating our model to distributed implementation
schemes, since the current methodology leads to a monolithic model of the envi-
ronment. Rules of the environment are also an important research direction with
the definition of ‘conservative rules’. Such rules may help in defining metrics of
the system entropy to evaluate its coherence. Finally, the current mechanisms
underlying tag interaction need to be modified to handle action simultaneity
and concurrent interactions in the system, which should take advantage of other
improvements in the modeling of tag interaction spaces.
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agency. In de Mántaras, R.L., Saitta, L., eds.: ECAI, IOS Press (2004) 33–37

9. Rogers, A., Jennings, N.R.: Collusion in Agent–Based Systems. AgentLink News
17 (2005) 6–8

10. Weyns, D., Omicini, A., Odell, J.: Environment, First-Order Abstraction in Mul-
tiagent Systems. Autonomous Agents and Multi-Agent Systems 14, number 1
(2007) 5–30
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Abstract. Stigmergy has been adopted in MAS (multi-agent systems)
and in other fields as a technique for realising forms of emergent co-
ordination in societies composed by a large amount of ant-like, non-
rational agents. In this paper we discuss a conceptual (and engineering)
framework for exploring the use of stigmergy in the context of societies
composed by cognitive / rational agents, as a means for supporting high-
level, knowledge-based social activities.multi-agent We refer to this kind
of stigmergy as cognitive stigmergy. Cognitive stigmergy is based on the
use of artifacts as tools populating and structuring the agent working
environment, and which agents perceive, share and rationally use for
their individual goals. Artifacts are environment abstractions that me-
diate agent interaction and enable emergent coordination: as such, they
can be used to encapsulate and enact the stigmergic mechanisms and
the shared knowledge upon which emergent coordination processes are
based.

In this paper, we start exploring this scenario introducing an agent-
based framework for cognitive stigmergy based on artifacts. After dis-
cussing the main conceptual issues—the notion of cognitive stigmergy
and the role of artifacts—, we sketch an abstract architecture for cogni-
tive stigmergy, and outline its implementation upon the TuCSoN agent
coordination infrastructure.

1 Introduction

In the last years, the study of stigmergy has influenced a number of different
research fields, including MAS (multi-agent systems). In general, and in MAS
research in particular, stigmergy is mostly used as the source of simple yet effec-
tive coordination metaphors and mechanisms, to be exploited for building robust
and reliable systems in unpredictable settings. The main source of inspiration is
obviously represented by the studies on insects and ant societies [1], which have
led to a basic meta-model based on (ant-like) simple and homogeneous agents
possessing no relevant cognitive abilities. Such agents interact with each other
through local modifications to the environment, eventually originating global
structures and behaviours [2].
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While this stream of research has produced a number of very interesting ap-
proaches in MAS (see [3,4] among the many others), it has also brought on two
main biases: (i) the agent model is very simple—ant-like agents do not exploit
any cognitive ability of theirs—and (ii) the environment model is often quite
elementary, featuring pheromone-like signs/signals with simple mechanisms for
diffusion, aggregation and evaporation—at most extended to force fields [5].

By contrast, a number of relevant works in the field of cognitive sciences put
in evidence how stigmergy—as the social mechanism of coordination based on
interaction through local modifications to a shared environment—is a funda-
mental coordination mechanism also e.g. in the context of human societies and
organisations [6,7]. In this context:

– modifications to the environment are often amenable of an interpretation in
the context of a shared, conventional system of signs;

– the interacting agents feature cognitive abilities that can be used in the
stigmergy-based interaction;

– the environment is articulated, and typically composed of artifacts, which
build up the social workspace, or field of work;

– artifacts can be suitably engineered in order to process information cogni-
tively shared by agents.

Starting from this consideration, in this paper we start exploring what we call
cognitive stigmergy, that is, the generalisation of stigmergic coordination to en-
able social activities of cognitive agents. We hence consider a wider notion of
agency, which includes high-level knowledge representation capabilities, explicit
representation of agent goals, inferential / planning / deliberation abilities, and
so on. Our goal is to promote the idea that the general notion of stigmergy can
suggest new models for interaction, coordination, and organization within MAS
including cognitive agents.

Following the approaches in cognitive sciences, and Computer Supported Co-
operative Work (CSCW) in particular [7], we stick to a meta-model featuring
artifacts, which are instruments and tools that make up and constitute the agent
environment, and which agents can select and use for their own purposes. Arti-
facts are environment abstractions [8] that are (i) the subject of cognitive agent
activity, (ii) the enabler and rulers of agent interaction, and (iii) the natural
loci for cognitive stigmergy processes.

The main aim of this line of research is to propose a reference conceptual
framework for cognitive stigmergy, which can also serve as a basis for engineering
practical experimentation in the field of MAS. We identify at least three different
objectives:

– from a scientific-synthetic viewpoint, we aim at constructing a model for
stigmergic coordination going beyond ant-like metaphors: agents are not
only ants, and signs for stigmergy are not only pheromones. The cognitive
abilities of agents, and the articulation of the environment through artifacts
are the essential ingredients to move from stigmergy to cognitive stigmergy;
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– from a scientific-analytic viewpoint, the proposed framework should be com-
bined with agent-based and simulation technologies in order to provide pre-
dictive models for systems based on cognitive stigmergy, such as human
organisations and societies;

– from an engineering viewpoint, we aim at devising out a framework for the
construction of MAS stigmergic mechanisms to coordinate complex activi-
ties of any sort within articulated operating contexts. Coordinated MAS be-
haviour should then emerge as the result of both cognitive and non-cognitive
activities by the agents, and by their local interaction mediated by suitably
engineered artifacts.

In this paper, in particular, we focus on the first issue, and also sketch a possible
approach to the third one. In particular, in Sect. 2 we recapitulate some of the
multidisciplinary pillars that a theory of cognitive stigmergy should be based
upon, then in Sect. 3 we first sketch our conceptual background. In Sect. 4 we
provide some remarkable examples of artifacts for cognitive stigmergy, and fi-
nally, in Sect. 5, we shortly outline a possible methodological and technological
framework for engineering MAS with cognitive stigmergy based on the TuCSoN
infrastructure for MAS coordination, adopting tuple centres as artifacts. Con-
clusion and future work are provided in Sect. 6.

2 Trans-disciplinary Background

The notions of stigmergy, interaction through artifacts, and the many sorts of
structures and behaviours that emerge in complex societies, are strictly inter-
related concepts that have been the subjects of investigation in a multiplicity of
heterogeneous research areas. Adopting a multi-disciplinary view is then rather
mandatory—but in some sense quite usual in the field of MAS, given the gener-
ality and expressive power of abstractions like agent, society and environment.

Even more, a trans-disciplinary approach is potentially very fertile: taking ex-
amples and definitions of stigmergic coordination from both ethology and social
sciences, bringing them to the MAS field, and building a general model for cog-
nitive stigmergy, is a fascinating perspective indeed, which could induce novel
interpretations and metaphors.

2.1 Definition and (Mis)Use of the Notion of Stigmergy

The original notion of stigmergy was introduced by Grassé in the late 50s
while studying and trying to explain the behaviour of social insects. In its first
formulation, stigmergy was defined as a “class of mechanisms that mediate
animal-animal interactions which is fundamental for achieving emergent forms
of coordinated behaviour at the society level”. Originally, the concept of stig-
mergy was used to build up a coherent explanation of the so-called coordination
paradox between the individual and the societal level: on the one hand, groups
of social insects seem to be cooperating in an organised, coordinated way; on
the other hand, each individual seems to be working as if it were alone, neither
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interacting with others nor involved in any collective behaviour [1]. The explana-
tion to the coordination paradox provided by stigmergy is that insects interact
indirectly: each insect (ants, bees, termites) affects the behaviour of other insects
by indirect communication through the use of the environment, which is made
of objects and artifacts such as material for the nest, or chemical traces.

From the original formulation of the notion of stigmergy, the key-role of the
environment firstly emerges, which acts not merely as a passive landscape against
which all the interactions occur, but rather as a mediator and a ruler of interac-
tions. Secondly, stigmergic interaction is always mediated : it occurs locally to the
interacting entity, and directly affects a portion of the environment. Finally, the
environment is seen as confined / bounded to well-defined elements, such as a
pheromone or a chunk of material for nest construction: so, objects, tools, instru-
ments, and artifacts encapsulate the logic of local interaction, and are therefore
prominent actors in the process of stigmergic coordination.

In the context of computer science, in general, and in the field of MAS, in
particular, stigmergy has been widely used as a technique for complex problem
solving, as well (more recently) as an approach to the design and development
of systems [3,4]. This of course is mainly motivated by the need for system
reliability and robustness in complex and unpredictable environments, which
could in principle be addressed by mechanisms for self-organisation like stig-
mergy. On the other hand, however, ants and pheromones provide for a simple,
easy-to-reproduce mechanism for stigmergy: as a consequence, stigmergy is often
implicitly reduced to an ant-like phenomenon. This is not to say that ant-based
mechanisms, models and technologies do not obtain significant outcomes: in-
stead, a large number of remarkable results were indeed achieved in computer
science [9], robotics [10], and MAS [11,12].

What is missing, we believe, is instead a wide and coherent view on stigmergy
that while sticking to the general principles of the original Grassé’s definition of
stigmergy, would also account for the facts that (i) agents are possibly cognitive
entities—agents are not always ant-like entities—, and (ii) environment is possi-
bly more articulated than a mere pheromone container, but is rather composed
of suitably engineered artifacts. This is exactly what we find in research from
cognitive sciences.

2.2 Artifacts, Workspaces, and Stigmergic Coordination

Forms of indirect, mediated interaction are pervasive in complex systems, in
particular in contexts where systems take the form of structured societies. In such
contexts, in order to scale with activity complexity, sorts of mediating artifacts
are shared and exploited to enable and ease interaction among the components.
Mediating artifacts of different sorts can be easily identified in human society,
which are designed and exploited to support coordination in social activities,
and in particular in the context of cooperative work. Well-known examples are
blackboards, form sheets, post-it notes, and archival tools. Mediation is well-
focused by some theories such as Activity Theory [13] and Distributed Cognition
[14] adopted in the context of CSCW and HCI (Human Computer Interaction),
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which explore how the environment can be shaped in terms of mediating artifacts
and in order to better support cooperative work among individuals.

Among the most interesting references, the work by Susi [6] represents one
of the most coherent efforts toward a theory of artifacts in social interactions,
putting together HCI and cognitive sciences. From this work a picture clearly
emerges where the activities within complex (human) organisations occur in the
context of structured workspaces : workspaces are made of artifacts, which are
subjects of the human cognitive activity, work as mediators of interaction, and
encapsulate coordination functions. The notion of workspace (media spaces, vir-
tual rooms, virtual workspaces in CSCW [7]) clearly exemplifies the idea of a
non-trivial, non-passive, articulated environment—where artifacts represent the
environment articulation. Also, artifacts are mostly a cognitive concept: intelli-
gent activity is required to enact them, make them work, and understand their
meaning as coordinating entities—as happens e.g. with triggers, placeholders or
entry-points [6].

From a psychologist perspective, the work by Castelfranchi [15,16] points
out another key issue: independently of the intentions motivating activities on
artifacts (intention to communicate or not, for instance), any behaviour in a
workspace is anyway amenable to an interpretation by the observers, which
could bring meaningful information, and affect their subsequent behaviour. For
instance, when Bianca takes one of the two glasses on the table to drink, she
is not explicitly telling Bernie on the other side of the table “take the other
glass”—she is just taking her glass plain and simple. However, Bernie is going to
interpret Bianca’s action on the shared workspace (the table with the glasses)
as an implicit communication from her, and take the other glass anyway.

This is also quite apparent in some of the most well-known examples of shared
knowledge-based human-oriented artifacts, such as platforms for cooperative
work like Wiki (and the Wikipedia [17]), and even platforms for e-commerce
(which are also huge sources of information) like Amazon [18]. For instance,
one of the most obvious but effective ways of interaction in the Wikipedia is by
annotating a page. When looked from an ant-like perspectives, this resembles
the release of a pheromone on a shared environment articulated in pages: more
(pheromones-)annotations “deposited” on the same page may “aggregate” to in-
dicate a higher level of interest, then attract the interest of other (ants-)readers.

However, the cognitive nature of bothpage artifacts and annotations, alongwith
the cognitive abilities of human agents, allows for less trivial forms of “stigmergic”
processes. For instance, ranking a page based on its perceived utility enables
more articulated forms of aggregation (like global average ranking), and may
consequently lead to different evolution histories of the whole knowledge base.

Even mediated implicit communication is easy to be observed, for instance
in Amazon. For instance, Lilo does not buy book A and then book B to say
anything to anyone—just to read them both. However, logging and aggregating
this sort of actions allow Amazon to say Stitch, who is buying book B, that
“customers who bought this book also bought book A”—which quite often turns
to be very informative in practise, and tends to influence both the individual
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and the overall behaviours. In other terms, individual cognitive actions (read a
book presentation, decide to buy that book) in a local context (the view from the
browser) upon a cognitive artifact (the purchase page) change the state of the
environment (the Amazon portal) and then the behaviour of other individuals,
such that in the overall the global behaviour of the system is affected.

Evidence of stigmergic processes involving cognitive features could not be
clearer around us—in the scientific arena, as well as in our everyday life. The
point is now how to use this evidence in MAS, so that both traditional results
from the ant-biased interpretation of stigmergy and the cognitive interpretation
drawn from CSCW, HCI, Activity Theory and cognitive sciences could be sub-
sumed, coherently modelled, and then be used in order to build complex, robust
and intelligent MAS.

3 Cognitive Stigmergy in MAS

Our objective in this work is the investigation of stigmergy principles in the
context of cognitive MAS, i.e. societies of goal/task-oriented/driven agents in-
teracting at the cognitive level. Such agents are therefore not necessarily simple
and reactive ones, as in the ant case, but can typically be rational, heteroge-
neous, adaptive, and capable of learning. We adopt the term cognitive stigmergy
to denote this approach, so as to remark the differences with respect to existing
approaches to stigmergy in MAS, which are typically based on societies of agents
whose capabilities and behaviour resemble those of insect-like entities.

As in the case of classic stigmergy, the environment is a central concept for cog-
nitive stigmergy, as an enabler and mediator of the agentwork and interaction.The
general picture—reflecting a certain complexity in the corresponding engineering
of applications—is given by a (possibly open) set of agents with their own specific
tasks and goals, which perform their individual as well as social activities in the
same working environment, sharing the same field of work. The interaction among
the agents is indirect, uncoupled in time and space. Froma modelling and engineer-
ing point of view, it is natural to model such a working environment as a first-class
entity: agents are aware (i) of their field of work, (ii) of it being shared with other
agents, and (iii) of its functionality, andof the opportunities to use it so as to achieve
their objectives (affordance of the environment). Such opportunities are exploited
by properly using the working environment, that is, by executing the operations
that the environment makes available to agents and by observing its state.

As in the case of classic stigmergy, a main point here is that the environment
is not a mere passive “container”, but it embeds mechanisms and (reactive) pro-
cesses that promote the emergence of local and global coordinated behaviours.
Not only it has a state that can be observed and modified by agents, but also
it encapsulates some laws that can be triggered by agent actions (or, by events
such as a change in location, or the passing of time) and alter the environment
state independently of agent intentions.

Under a cognitive perspective, the working environment in cognitive stigmergy
can be framed as a set of shared stateful tools providing specific functionalities
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that are useful for agents performing their individual work. At the same time,
such tools are designed to be collectively shared and used by agents, and are
generally implemented so as to effectively and efficiently support their shared
functionalities, thus largely impacting on the social level.

In the rest of this section, we focus on the answer to the following key question:
how could this kind of working environment be modelled as a first-class entity
in MAS? To this end, in the following we elaborate on the notion of artifact as
a means to explicitly and directly design and build such a working environment.

3.1 Exploiting the Notion of Artifact

The notion of artifact (and the related conceptual framework) has been intro-
duced recently in MAS as a first-class abstraction representing tools or objects
(devices) that agents can either individually or collectively use to support their
activities, and that can be designed to encapsulate and provide different kinds
of functionalities or services [19,20]. If agents are meant to be first-class abstrac-
tions to model goal/task-oriented/driven pro-active entities, artifacts are those
entities modelling systems (or parts of a system) that are better characterised
as resources or tools used by agents for their own aims. In particular, and unlike
agents, artifacts neither have internal goals, nor do they exhibit a pro-active
behaviour; instead, they simply provide agents with some kind of functionality
they could be suitably exploit, typically in the form of a service—in other words,
while agents communicate with other agents, agents use artifacts.

According to the abstract model defined [19], artifacts in cognitive MAS can
be characterised by (see Fig.1): a function, as its intended purpose, i.e. the
purpose established by the designer / programmer / builder of the artifact—
in other words the intended functionalities the artifact is meant to provide; a
usage interface, as the set of the operations that agents can invoke to use the
artifact and exploit its functionality; some kind of operating instructions, as a
description of how to use the artifact to access its functionality; a structure and
behaviour, concerning the internal aspects of the artifact, that is, how the artifact
is structured and implemented in order to provide its function.

Unlike agents, artifacts are not meant to be autonomous or exhibit a pro-
active behaviour, neither are they expected to have social capabilities. Among
the main properties that are useful according to the artifact purpose and na-
ture, one could list [20]: (i) inspectability and controllability, i.e. the capability
of observing and controlling artifact structure, state and behaviour at run-time,
and of supporting their on-line management, in terms of diagnosing, debugging,
testing; (ii) malleability (or, forgeability), i.e. the capability of changing / adapt-
ing artifact function at run-time (on-the-fly) according to new requirements or
unpredictable events occurring in the open environment,1 and (iii) linkability,
1 Such adaptation is not meant to be realised autonomously by the artifacts them-

selves, but by MAS agents & engineers acting on the artifacts. Mechanisms for
non-intentional self-adaptation of artifacts are not excluded a priori, but they are
not directly related with malleability, and are not necessarily a desirable property
of artifacts.
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i.e. the capability of composing distinct artifacts at run-time as a form of com-
position, as a means to scale up with complexity of the function provided, and
to support dynamic reuse. It is worth to be remarked that these artifact fea-
tures are not agent features: typically, agents are not inspectable, do not provide
means for malleability, do not provide operations for their change, and do not
compose with each other through operational links.

Also, artifacts can have a spatial extension, i.e. given a MAS with a topology,
the same artifact could cover different nodes: in other words, a single artifact
can be both conceptually and physically distributed. For instance, a blackboard
artifact can cover different Internet nodes, where agents may use it by exploiting
a local interface. Technically, agents could be distributed, too—for instance,
having the knowledge base in some node and the deliberation engine hosted by
some other node: most often, an agent is situated within a specific location, at
least by considering the agent models and architectures that are most diffused
(an example is the FIPA model).

Given this notion of artifact, we can reformulate the context of cognitive
stigmergy in terms of a set of agents sharing a set of artifacts representing their
working environment. This set can be split along two different levels:

– a domain level, with artifacts that represent the target of the agent work, or
an objectification of such a target.

– a tool level, with artifacts that represent the working tools which can help
agents in doing their work.

Our objective is to instrument the tool level with a web of linked artifacts which
can be used to improve the work of the collectivity of agents sharing the same
working environment. At the systemic level, these artifacts are meant to be used
both to improve the knowledge about the practises in using the artifacts at the
domain level, and to possibly support social construction and evolution / adap-
tation of such artifacts, toward directions that are useful for the collectivity of
agents in the overall. In order to support this functionality, the artifacts belong-
ing to the tool level should encapsulate stigmergic mechanisms partially similar
to the mechanisms found in ant-based systems and pheromone infrastructures:
such mechanisms are described in Sect. 4.

3.2 Re-framing the Notion of Locality: Workspaces

In classic approaches to stigmergy the notion of topology (and related notion
of locality) is mostly physical, defining from the viewpoint of agents—which are
typically mobile—the portion of the environment which can be directly affected
by their actions or can be perceived. In the case of cognitive stigmergy, this cru-
cial notion could be formulated in a natural way with the notion of workspace, as
the set of artifacts directly available (usable) for an agent. Workspaces can cross
each other sharing agents and artifacts, can be nested, and so on: in synthesis
they are a way to define the topology in a rigorous way.

Actually, the topology induced by this characterisation is more abstract and
could be articulated along different dimensions. An important one is for instance
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organisation: the same artifacts could be accessible and usable in different ways
according to the roles and permissions assigned to agents by the organisation
they belong to.

It is worth noting that the nature and functionality of the artifacts could
bring in situation where—to some extent—the principle of physical locality is
violated. This is evident in our society, where artifacts (for humans) such as cell
phones, televisions, or the Internet itself can be used to observe and interact in
a direct way with entities—e.g. humans—located at completely different places
of the world. Conceptually, the action of an agent executing an operation on
an artifact of its workspace (its locality) can have “instant” effects on a com-
pletely different workspace. This happens because artifacts can be either shared
among workspaces or linked together across workspaces.2 Actually, the principle
of locality still holds, since agents can only use the artifacts belonging to their
workspaces.

3.3 From Pheromones to Annotations

In every stigmergic system, the effects of agent actions on the environment are
understood as signs. Once created, signs persist independently of their creator
and are observable by the other agents, and are subject of manipulation by
the environment itself according to the laws which characterise the stigmergic
processes—e.g. diffusion and evaporation. Differently from pheromones in the
case of ant-based stigmergy, in the case of cognitive stigmergy signs typically
hold a symbolic value, embodying information of some sort, with a formal or
informal semantics, referring to some ontology. We refer to such a symbolic
information in cognitive stigmergy as annotations.

Coming back to the two levels previously introduced, annotations are useful
first of all for expressing some kind of comment or knowledge about the artifacts
(and about the practise of use of artifacts) belonging to the domain level, which
are targets of the agent work. Then, annotations are useful to objectify also com-
ments or reflections that do not concern a specific artifact, but more generally
a working practise, and could possibly refer to multiple artifacts. Finally, anno-
tations can be used for expressing a comment on the annotations themselves,
typically about their utility, effectiveness, and so on.

Knowledge provided by annotation is both explicit—the content of the
annotation—and implicit—the “shape” and the context of the annotation, in-
cluding for instance the possible intention of the agent or group of agents that
created the annotation. The concept of shape for annotations could be consid-
ered as analogous to the concept of force in the case of speech acts: it modulates
annotation content according to the information that could be of some use when
reasoning on annotations.

Some of the artifacts defining working spaces in cognitive stigmergy are possi-
bly devoted to the management of annotations, providing agents with operations

2 One should remember that, from a physical point of view, an artifact could be
distributed across multiple sites.
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for creating and observing annotations, and embedding mechanisms for automat-
ically manipulating annotations (with forms of aggregation, diffusion, selection,
ordering) in order to implement the functionality required for cognitive stig-
mergy. Accordingly, we deal with two basic kinds of annotations:

– annotations explicitly and intentionally created by agents. These include,
for instance, agent feedback (evaluation) about a specific artifact belonging
to the domain level; agent feedback about a specific annotation on one such
artifact; agent annotations about a set of artifacts, or a usage practise during
a working session.

– annotations automatically created by the artifacts supporting their working
activities. Examples include annotations reporting about how much an arti-
fact has been used, how many agents exploited an artifact for their purposes,
how many agents considered an annotation as useful for their purposes, which
other artifacts have been used (and how) by agents using a given artifact.

4 Artifacts for Cognitive Stigmergy

Generally speaking, artifacts in cognitive stigmergy should first of all promote
awareness, that is, making agents seamlessly aware of the work and practises
of other agents, which could in turn be effective to drive or improve their own
activities. Awareness is a key aspect to support emergent forms of coordination,
where there is no pre-established plan defining exactly which are the dependen-
cies and interactions among ongoing activities (involving agents and artifacts)
and how to manage them—instead, such a plan emerges along with the activities
themselves.

A simple but effective example of stigmergic mechanism promoting awareness
can be found—for instance—in Amazon: a user consulting the page of a book
is provided with a list of other books, bought by users that purchased the same
book. This kind of mechanism in Wikipedia could be realised through a page
annotation of the kind: “people consulting this page have also consulted pages
X, Y, Z”. In our framework, such a mechanism can be generalised by supporting
the automatic creation of annotations on artifacts of the domain level, reporting
information about which other artifacts have been used by agents using the same
artifact.

In the remainder of this section we describe a basic set of artifacts which could
constitute a simple example of an architecture supporting some form of aware-
ness and other features characterising cognitive stigmergy. On the background
of this architecture there is the notion of working session, as a temporal scope
for an agent activities. An agent starts a working session with an objective in
mind, which is supposed to persist for all the duration of the session. Knowing
the (either explicit or implicit) objective of an agent during a working session
is important to provide a context—in terms of the problem to be solved, the
goal to be achieved, the task to be executed—to the annotations (evaluations,
comments, . . . ) made by the agents, and to the practise of the agents using the
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artifact of the domain level. For instance, in Wikipedia, agent feedbacks about
the utility of a page would be better understood and evaluated by taking into
account the problem the agent is facing (i.e. what it is looking for).

4.1 Promoting Awareness: Dashboards, Logs, Diaries and
Note-Boards

A first and necessary step toward awareness is to keep track of both the actions
and the annotations made by individual agents during a working session. For
this purpose, we identify three basic kinds of artifacts, corresponding to three
different kinds of functionalities: dashboards, logs and diaries (see Fig.1):

– A dashboard provides the functionalities of a panel (interface) used to focus
on a specific artifact (or a set of artifacts belonging to the domain level) to
interact with the artifact and to take / observe / manage annotations. The
concept of focus aims at representing the intention of using an artifact.

– A log is used to keep track of events, providing operation for their inspections
and ordering.

– A diary is an artifact used to keep track of annotations intentionally made
by an agent. The diary typically keeps the annotations organised by working
sessions.

The dashboard is linked to the log so as to trace all the operations executed by
the agent during a working session. Actually, the log of the operations executed
by an agent is interesting also for analysing paths as sequences of executed
operations, which can be important to identify and evaluate practises in using
one or a set of artifacts belonging to the domain level. The stigmergic system
could be instrumented so as to make agents aware of such practises and of the
possibility to provide an evaluation, so as to augment the common awareness
about good (and bad) practises.

Besides tracing individual agent actions and annotations, it is necessary to
introduce artifacts that actually make it possible to effectively share annotations
about specific artifacts of the domain level. For this purpose, the note-board
artifact is introduced. A note-board is useful for keeping and managing all the
annotations about a specific artifact (or set of artifacts) of the domain level. For
instance, in the Wikipedia example we could have a note-board for each page
(or group of pages) of the system.

A note-board is meant to contain both the annotations intentionally made by
agents on the specific artifact, and the annotations automatically created by the
artifact itself or by other artifacts by virtue of the stigmergic mechanisms and pro-
cesses. A simple example can be an annotation reporting how many different kinds
of agents used a specific artifact. Such a functionality can be obtained by properly
combining the dashboard and note-board: for instance, each time a dashboard fo-
cuses for the first time on an artifact X , an annotation about this fact can be made
on the note-board of artifact X . The note-board can then transform the set of such
annotations in a single annotation (bymeans ofaggregation mechanisms, described
in next subsection), reporting the number of agents that used the artifact. Another
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dashboarddiary log

note-board

dashboarddiary log

note-board note-board

artifact X artifact Y artifact Z

domain level 

tool level 

agent level 

Fig. 1. An abstract representation of an architecture for cognitive stigmergy based on
dashboard, log, diary and note-board artifacts

example could be an annotation reporting information about which other artifacts
have been used by agents using this artifact. In this case, when the focus of an agent
switches from an artifact X of the domain level to an artifact Y , a suitable anno-
tation can be automatically created on the note-board of artifact X reporting the
fact that an agent using artifact X has then used artifact Y , and on the note-board
of artifact Y with the dual information.

The above examples suggest how the combined use of artifacts with relatively
simple functionalities could be effective enough to improve agent awareness about
their working practises. Functionalities provided by artifacts are instrumental to
realise the forms of reinforcement and positive feedback that typically charac-
terise stigmergic systems as dynamic non-linear systems: the more agents are
aware of the usefulness of an artifact, the more they use it, augmenting the
overall awareness about the utility of the artifact.

4.2 Some Basic Stigmergic Mechanisms

Analogously to the case of ant-based stigmergy, also in the context of cognitive
stigmergy it is possible to identify some basic and recurrent mechanisms which
can be embedded within artifacts in order to support stigmergic processes:

Diffusion — Diffusion is one of the basic mechanism in ant-based stigmergy. In
the context of cognitive stigmergy, an analogous principle could be exploited
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to improve awareness, according to the simple rule that annotations that con-
cern a specific artifact could be useful also for artifacts that are directly linked
to that artifact according to some kind of relation explicitly established at
the domain level. For instance, in the case of Wikipedia, annotations concern-
ing a specific page could be useful also for pages that are directly linked to or
directly link such a page.

Note-boards could be designed to suitably support diffusion capabilities:
annotations intentionally made by agents about an artifact could be auto-
matically propagated from the related note-board to all the note-boards of
the linked artifacts. Then, among the information that gives shape to an
annotation, a diffusion level could also be included, indicating whether the
annotation has been made directly by an agent or it has been propagated
from other artifacts. Different kinds of diffusion policies are possible: for in-
stance, note-boards could support either diffusion of direct annotations only,
or propagation of annotations, too, possibly specifying a sort of propagation
radius in terms on maximum diffusion level.

Aggregation — In our framework, the aggregation mechanism accounts for au-
tomatically transforming a set of annotations—related by some criteria—into
a single annotation, typically containing an explicit information describing
the aggregation in the overall (for instance, a quantity). Note-boards have
the fundamental role of aggregators of the annotations concerning a specific
artifact of the domain level. For instance, note-boards could automatically
aggregate annotations containing agents’ feedback (evaluation) on an artifact
or on an annotation made on the artifact.

Selection and Ordering — Annotationsmayhave a different relevance accord-
ing to the different kinds of criteria / dimensions,which canbe either subjective
or objective. Consequently, such annotations could be automatically ordered
by artifacts managing them in order to reflect their relevance. An example of
ordering criteria is freshness, measuring relevance of an annotation according
to its age. Another one is pertinence, measuring the relevance of a propagated
annotation according to its diffusion level, as defined previously. A selection
mechanism accounts for keeping and making available only a limited set of
annotations—typically the most relevant ones according to the selected cri-
teria / dimensions. Selection is often combined with ordering. To some extent,
selection and ordering mechanisms could be considered as a generalisation—in
the context of cognitive stigmergy—of the evaporation mechanism, as found
in ant-based system. Also dissipation—a frequent mechanism in stigmergy
system—could be considered as a specific case of selection, where all annota-
tions not selected according some criteria are forgotten.

Actually diffusion, aggregation, selection and ordering are general kinds of mech-
anisms which can be considered as useful for a wide range of artifacts. In the
examples we mainly consider note-boards, however it is easy to identify their
utility also in diaries, where annotations are typically organised (aggregated)
according to working sessions, ordered according to temporal criteria, and pos-
sibly diffused to note-boards, in case they concern specific artifacts.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Cognitive Stigmergy: Towards a Framework Based on Agents and Artifacts 137

5 Building MAS with Cognitive Stigmergy

5.1 Toward an Agent Infrastructure for Cognitive Stigmergy

As mentioned in Sect. 1, the conceptual framework of cognitive stigmergy is
meant to be useful both for modelling / simulating complex social systems—so
as to analyse emergent social behaviours of societies evolving in some specific
workspaces—and for engineering complex agent applications, aiming at achiev-
ing some sort of fruitful social behaviour in spite of the independent working
activities of the individual agents and / or the absence of a global coordination
plan to follow. In both cases, in particular for the latter one, it is of foremost
importance to have models / infrastructures that make it possible to represent
in the most direct and seamless way the main concepts of the framework, in
particular artifacts of the kind discussed in the paper. Accordingly, such a mid-
dleware would provide a support for cognitive stigmergy as a service, which MAS
applications could customise and exploit according to the need.

5.2 An Example: TuCSoN as a Middleware for Cognitive Stigmergy

As an example, TuCSoN3 coordination infrastructure [21] can be used as a mid-
dleware to experiment cognitive stigmergy, since it provides on the one side a
direct support for cognitive and generative communication, based on the gen-
eration and consumption of tuples as kind of annotations; on the other side, it
provides a natural way to model artifacts as first-class abstractions, with the
possibility to define their specific behaviour.

TuCSoN provides tuple centres as first-class abstractions that agents can use
to support their communication and coordination. Technically, tuple centres are
programmable tuple spaces—sort of reactive blackboards that agents access as-
sociatively by writing, reading, and consuming tuples—ordered collections of
heterogeneous information chunks—via simple communication primitives (out,
rd, in, inp, rdp) [22]. While the behaviour of a tuple space in response to com-
munication events is fixed, the behaviour of a tuple centre can be tailored to
the application needs by defining a set of specification tuples expressed in the
ReSpecT language, which define how a tuple centre should react to incoming
/ outgoing communication events. Basically, ReSpecT primitives make it pos-
sible to manipulate the tuples inside the tuple centre and also to establish a
link between the tuple centre with other tuple centres—for instance making it
possible to insert tuples in other tuple centres directly via reactions. ReSpecT
is Turing-equivalent [23], so in principle any kind of tuple manipulation is pos-
sible. From the topology point of view, tuple centres are collected in TuCSoN
nodes, distributed over the network, organised into articulated domains. A node
can contain any number of tuple centres, denoted by a specific name: the full
name of a tuple centre consists in its local name plus the Internet address of the
hosting TuCSoN node.
3 The TuCSoN technology is available as an open source project at the TuCSoN web

site http://tucson.sourceforge.net
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Then, it is natural to use TuCSoN tuple centres as general-purpose artifacts
that can be programmed according to the need, in order to provide specific func-
tionalities. Annotations can be easily implemented as logic tuples. Interaction
between agents and artifacts could be modelled on top of tuple centre basic com-
munication primitives, by choosing a specific format for both tuples and tuple
templates. Artifact behaviour could be implemented as a set of ReSpecT reac-
tions implementing the basic stigmergic mechanisms discussed in the paper, by
virtue of the Turing-equivalence of ReSpecT. In particular:

– aggregation mechanisms can be implemented as ReSpecT reactions consum-
ing a specific set of tuples and producing a single tuple, according to some
specific criteria;

– selection and ordering mechanisms can be implemented as reactions that
create and maintain tuples containing a list of other tuples, imposing an
order among them;

– both diffusion and artifact composition can be implemented by using the
linkability property of tuple centres, with reactions that propagate tuples
from a tuple centre to the others.

The basic set of artifacts identified in previous section—dashboards, diaries, logs
and note-boards—can then be implemented as suitably programmed ReSpecT
tuple centres. There is no space enough here to provide further details about
design and implementation of such artifacts—which however are not overwhelm-
ingly complex, indeed. Such details are likely to be discussed in a forthcoming
work along with an evaluation of the system performance in supporting cognitive
stigmergy.

6 Conclusion and Future Works

Stigmergy is a simple and powerful mechanism around which complex coordina-
tion patterns can be organised and built. Despite the generality of the original
definition by Grassé [1], the full potential of stigmergy has yet to be developed
in the area of MAS, as both a modelling and a constructive principle for complex
agent-based systems.

In this paper, we proposed an extended interpretation of stigmergy, which we
termed as cognitive stigmergy, which could on the one hand preserve the benefits
of the ant-biased acceptation usually adopted in the MAS field, on the other hand
promote the full exploitation of the cognitive abilities of agents and of the envi-
ronment articulation in artifacts in the stigmergic process. After summarising our
main sources of inspiration from a number of different research areas and tech-
nology contexts, we proposed a conceptual framework for cognitive stigmergy in
MAS, and then sketched a possible engineering approach based on the TuCSoN
infrastructure for agent coordination, using tuple centres as artifacts.

Future work will be devoted to further explore both the theoretical frame-
work and the practical perspectives opened by this paper, focusing in particular
on scenarios like e-learning systems, and implicit organisations based on over-
hearing / over-sensing.
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Abstract. When agents act is a common environment they leave traces. In this 
paper we explore the importance of using such traces as signals (stigma). Trace 
signals enable a flexible way to support indirect interaction between agents 
without adopting dedicated communication channels and signals. Although the 
kind of messages that can be exchanged with traces is limited, their importance 
for decentralized and dynamic multi-agent systems is vast. A taxonomy of 
trace-signals is provided and their role in different social interactions is 
explored. Some of the benefits and limitations of this trace-based 
communication are discussed. 

Keywords: communication, stigmergy, multi-agent coordination, environment. 

1   Introduction 

Suppose you are at the movie theater looking for a seat. You suddenly notice a spot in 
a very good row. Nobody is sat there at the moment; hence you decide to take it. You 
move away a coat covering it, and you sit there.  

Although this behavior is successful (you as an agent had a goal and you have 
fulfilled it by easily removing an obstacle), this achievement is not without 
consequences. In fact, if you had evaluated the situation more carefully, you could 
have realized that the coat was also a trace of somebody else being there before you. 
Taking this into consideration, your action could have been different. 

The fact that such a scenario seems transparent to us is what makes it really 
important. In this simple situation a sophisticated interaction is enabled by a simple 
modification of the environment. Understanding what traces like these can “mean” is 
necessary, we argue, to enable a very effective and flexible way to support interaction 
and avoid possible conflicts between agents.  

Moreover, with all probability, the coat was not there accidentally. Another agent 
has left the coat on the seat on purpose, so that others even without seeing her 
presence, but noticing her trace, could understand that the seat was already taken. A 
trace as such is a sign. However if it is left to be noticed and understood by others, it 
is also a signal. By leaving her coat there somebody intended to inform you about 
something.   

Although we are good at understanding the meaning of a trace in a context, we 
don’t necessarily recognize it as a message. In fact it is not necessary to understand 
the communicative intention behind the trace to convey a meaning. However one that 
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intends to exploit the potential of traces for improving interaction should carefully 
consider how the others react when seeing them.  

The fact that similar trace signals seem to be everywhere tells us that we humans 
extensively rely upon this form of communication in our daily interactions.  

Most probably, moreover, such communication is of the utmost importance also to 
support more conventional and structured forms of interactions like language and 
other institutions. In fact specialized means for communication can arise out of such 
simpler forms [5, 17] and interact with this non-specialized means to be effective  
(see below).  

It is evident that leaving a coat on a seat to signal one’s own presence, for example, 
interacts with operating conventions full of deontic consequences. When coming back 
one can even start fighting for one’s seat. Given that she was expecting a certain 
behavior on your part, leaving a coat was also an implicit prescription. Can such 
normative reality develop spontaneously on top of mere interpersonal relations? Are 
implicit communication exchanges sufficient to support it?  

Although this kind of normative consequences is only available to us, commun- 
icating with traces is not only a human fact.  

Actually, the relevance of indirect interaction via environmental modifications has 
been first noticed in insect societies under the rubric of stigmergy [9]; in fact traces 
carrying messages are stigma in a strict sense: signals that are the product of previous 
modification of the environment by other agents. Stigmergic interaction overlaps with 
the use of traces for communication, and has been extensively studied in insect 
societies [1] and also used as a model for artificial ones [14].  

However from our perspective, stigmergy, as it has been interpreted so far, has still 
been applied to a restricted number of phenomena without noticing its relevance in a 
very wide range of situations (from animal to human and artificial societies; from 
simple coordination to support for normative systems)1. The fact that current 
applications are still too heavily influenced by initial case studies2 is probably due to a 
lack of a general theory of stigmergy. 

In this paper we wish to convince the reader that agents, interacting in a traceable 
and observable environment3, have the additional opportunity to exploit their own 
traces for communicating. We will first introduce our revised notion of stigmergy 
considered as a form of indirect communication (Section 2). On the basis of such 
framework, the use of traces as implicit signals will be clarified. A number of 
different messages that can be exchanged in this way will be discussed with the aim 
of offering a first taxonomy of trace-based messages (Section 3). Although the scope 
of what can be communicated behaviorally is limited, a descriptive and a directive use 
of traces will be disentangled (Section 4) and, from basic behavioral messages more 
complex ones will be introduced (Section 5). Finally, some of the benefits and 
limitations of this form of communication are examined. 

Although in this explorative article we will extensively use examples from human 
societies, we contend that such general framework is useful also for engineers of 
                                                           
1 For an exception see [16].  
2 See the impact of the pheromone metaphor in the vast majority of applications [2, 10,15]. 
3 In [20] we have formally investigated these environmental requirements to support this form 

of communication. 
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artificial ones. If a long-term objective for artificial multi-agent systems is to have 
self-organizing and dynamic societies where the software agents are their own 
artificial engineers, we suspect that this form of communication will play a major and 
pivotal role. 

2   Stigmergy Revisited 

2.1   Communication Is Interaction 

Influencing others by exploiting their capacity to understand signs seems to identify 
the simplest case of communication.  

However, from this perspective, the notion of communication is still too broad. It 
would include all the cases in which we modify the environment to influence other 
agents. If you are sleeping and I open the windows and let the sunlight enter, I wake 
you up. If by seeing the sunlight you infer that it’s time to wake up I didn’t 
communicate this fact to you. In this scenario I have influenced you twice and that 
was my intention. I intended that you woke up and that you believed that it’s time to 
wake up. To induce such belief I have relied on your capacity to read signs and 
understand them. Although I intended such results, the sunlight is not a signal that I 
have emitted.  

Suppose differently that to wake you up, I have set the alarm clock with the aim of 
letting you know that it’s time to wake up. When it starts ringing, you wake up and 
you realize that is the time to wake up. However you don’t know and don’t 
understand that the alarm clock has been set by somebody (that it is also a trace of 
somebody). Again, although in this situation setting the alarm clock is a trace, 
because you don’t understand that a meaning can be inferred from a trace left by 
somebody (you don’t see the sign as a trace), it seems that no communication 
happened and no signal have been transmitted.  

Hence we argue that communication requires two minimal conditions: one for the 
addresser and one for the addressee.  

The first condition is that the sign is emitted on purpose by the addresser to 
influence an addressee by informing her about something, hence the sign is a signal. 
The addresser should have either an informative intention or, at least, an informative 
function. Communication needs signals and not only unintentional signs. 

The second condition, that so far has been ignored, is that such a signal is at least 
to be understood as a trace of somebody else by the addressee. The sign is to be 
recognized as the product of an agent such that the action of the addressee is in fact a 
reaction to another agent. 

What is sufficient to consider an interaction between two agents as communication 
is that the addressee considers the signal produced by the addresser, at least, as a trace 
produced by another agent. Treating the sign also as a trace seems to be the minimal, 
but necessary, requirement.  

If the addressee had to understand the sign as a signal, i.e. to grasp also the 
informative intention of the addresser, we couldn’t consider as communication the 
exchange in the example of leaving the coat on the seat. As we have shown, for the 
communication to succeed, it was sufficient for you to understand the message  
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(“an agent is here”) without understanding it as a message (“this agent wants me to 
know that she is here”). 

Communication is a form of real interaction because is a process that can happen 
only between agents that understand a meaning through each other actions. 

2.2   Indirect Communication 

When looking for a room in an unknown building where a meeting is supposed to 
take place, it is useful to follow the ad-hoc signals that the organizers have hung on 
the entry wall. Usually such signals display an identification name (say the project 
acronym) and an arrow. You follow the direction pointed by the arrow. On your way, 
you also notice that other arrows signal the right direction when appropriate (i.e. when 
you have to decide which turn to make at the end of the stairs). Finally you find the 
room you were looking for.  

It is evident that the organizers intended to communicate with you by sending a 
message. However, instead of directly transmitting the message by calling to give 
directions personally to everyone in advance, they have adopted a more effective 
strategy. They have modified in appropriate ways the environment, such that they can 
indirectly communicate with you (and with all the other participants). While in direct 
communication the environment is exploited as a channel to transmit the signal, in 
indirect communication the environment is just a support to record it, a memory. It is 
up to the agents to retrieve it and complete the transmission. 

This form of indirect interaction (in this case communication) is very important 
because it is situated, cheap and exploits the environment also to abstract from 
irrelevant information.  

Moreover such a standard example of human communication bears also a striking 
resemblance with the prototypical case of pheromone-based communication between 
animals. Ants, it is well-known [22], on their way to food, communicate by leaving 
pheromone signals that influence other ants. Very similarly, by attaching an arrow on 
a wall one can influence us when looking for directions. In both situations the 
interaction is indirect, and in both situations the agents exploit a signal that is there 
only to communicate (an explicit signal).  The main difference is that the former 
signal is an evolved biological one, while the latter is a conventional signal that is 
intentionally produced. These two instances are cases of indirect communication 
based on the environment modification.  

While such form of indirect communication is extremely important, what concerns 
us in this paper is a more specific case.  

2.3   Implicit Signals and Behavioral Messages 

In fact, although indirect in the same sense, the form of communication discussed in 
the introductory remarks is distinct from the above two cases because it exploits 
implicit signals.  

Although agents can emit explicit signals (signs that have been shaped for 
influencing through informing; the arrows and the pheromone), often, as we have 
suggested in the introduction, they take advantage of implicit ones (signals that are 
only shaped for their practical goal but that can be nonetheless used for a 
communicative purpose). 
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It is important to stress that such signs are signals only implicitly. In fact the 
vehicle is not marked in a manifest way as a signal, as something that is for 
communication. Although the fact that being manifestly for communication needs 
further explanation [19], it can be argued that such explicitness at least entails that it 
cannot be denied that one is communicating because communication is the evident 
function of the sign.  By using specialized or explicit signals we cannot deny that 
we are communicating because it is a tool designed or evolved for this function. It 
would be like denying the one is hammering, when one uses a hammer to drive a 
nail in.  

Differently, when we exploit our usual practical actions to communicate we can 
deny that we are communicating. At least this entails that something more than 
communication is involved. In the end we are just after our practical goals knowing 
that somebody is observing us. The produced signs are used as signals but are not 
shaped to be signals.  

This form of communication is behavioral in the sense that implicit signals deliver 
behavioral messages that are messages first of all about one’s goal-directed behavior. 
Behavioral messages then are different from the messages with arbitrary meanings 
that can be exchanged with special conventionalized actions (explicit signals like a 
pointing gesture or a linguistic speech act) or with some external symbol specialized 
for communication (explicit signals like the arrows or the pheromones).  

Hence we are interested in actions, and the traces that are left in the environment, 
that are explicitly shaped for a normal practical goal (like leaving the coat on the seat) 
and only implicitly used as signals to let somebody else understand something (i.e. 
such goal is additional to the practical one and does not need a special action to be 
achieved). Using a trace as an implicit signal then exploits the ability of others to 
understand something out of it4. 

2.4   A General Definition of Stigmergy  

On the basis of the above considerations, it is now possible to clarify the notion of 
stigmergy. We define stigmergy as the process of indirect communication of 
behavioral messages with implicit signals. 

We consider this interpretation of stigmergy as a generalization of current ones, 
and broadly compatible with them.  

The classical notion as introduced by Grassé in 1959 [9] has emphasized the crucial 
consequences of indirect interaction. Agents modifying a common environment can 
create structures that feedback on their behaviors. A modified environment can mediate 
the interaction between the agents. Such local and indirect interaction enables even very 
simple organisms to create complex forms of coordination and organization at the 
collective level. Indirect interaction, or interaction through the environment, is necessary 
to understand self-organizing systems but self-organization is just a function of indirect 
interaction and not a defining feature. 

                                                           
4 A sophisticated theory of the motivating results of an action is needed to provide a more 

complete analysis of weak and strong cases of this form of communication. Such richness 
however is not required for the aims of this paper. See Castelfranchi [5] for a more general 
discussion of the theory of behavioral implicit communication. 
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Without denying the extreme importance of this function, our aim is to show that 
this form of indirect interaction is usefully analyzed also as a form of communication: 
stigmergic interaction is a form of indirect communication where the environment is 
used as a support to record messages. 

However this is still not enough.  In fact, as we have shown, the great power of this 
form of communication is that it exploits the information that is embedded in usual 
practical actions and its traces without the need of specialized means of 
communication. Even though leaving explicit signals (signals that are shaped for 
communicating) in the environment can also support complex form of interaction, a 
more primitive but essential process exploits implicit signals. 

In fact, if extracting information from others’ behaviors is important for any social 
species and the environment can function as a sort of memory keeping track of this 
behavior in form of traces, then stigmergy is the process that takes advantage of this 
environmental property to support coordination. 

Failing to notice that stigmergy is also a peculiar form of communication, we 
think, is one of the reasons that explain its still too limited impact. Focusing on the 
kind of messages that can be transmitted in this manner can illuminate the uses that 
stigmergic communication can have. And we are deeply convinced that the 
importance of stigmergy for animal, human and artificial societies is huge. 

When traces are implicit signals, they are used to communicate something. This 
paper aims to specify more precisely what is this ‘something’ that can be implicitly 
exchanged between agents in a common environment.  

3   One Trace, a Variety of Basic Behavioral Messages 

If a trace is a long-term observable modification of the environment that is the 
outcome of an agent’s action, then the kind of messages that a communicator can 
implicitly send are first of all strictly tied to herself and the action that has been 
thereby accomplished: the behavioral messages.  

As in many standard accounts [21], an action is considered here as a goal-oriented 
modification (or forbearance from any modification) of the environment. For an 
action to happen, such a modification conceptually implies that (1) an agent (2) 
intends to do the action, and (3) in presence of the right opportunities (4) and with the 
right skills, (5) she modifies (or forbears from modifying) the environment (6) in 
order that  (7) a certain result is realized.  

In what follows we will provide a first taxonomy of trace messages organized 
around these seven core messages. We consider this variety of possibilities the basic 
behavioral messages on top of which more complex ones can be exchanged.  

3.1   Informing About the Presence 

The most basic message that a trace can deliver is a sign of the presence of another 
agent:  

I inform you that: “I’m here” 
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At the core, in fact, the meaning of the trace signal used in the opening example, 
viz. the coat, is a sign about the presence of another agent already occupying the seat.  

As every sign, also a trace like this can be used to fake a presence when this can be 
useful. Consider for example the habit of turning the lights on in one’s house when 
one is going out. When a room is clearly visible from the outside, leaving a light on is 
a signal that is left for a possible intruder to mean that somebody is still at home. The 
light in itself has not a conventional meaning but the possible inferences that can be 
drawn by observing it are exploited to send a ‘deceiving’ message. Moreover, in this 
case, although the real goal of the practical action is informative, one does not want to 
be understood as communicating. This example is also useful to stress that sometimes 
it is not even desirable that the addressee understands that one is communicating. The 
light is intended to be understood as a simple trace and not as a trace intentionally 
emitted for some informative goal (the signal).  

3.2   Informing About the Intention 

From simple traces, it is possible to extract also information about one’s intention to 
do a given action. Here the relevant meaning is: 

I inform you that: “I am committed to this action” 

A lot of social relationships require, beyond explicit words and declarations, the 
practical ‘demonstration’ of a given attitude or decision.  

In particular demonstration of trust can be used to support trust relationships. As an 
example consider the phenomenon of trust dynamics studied by Castelfranchi and 
Falcone [6] where the fact that an agent trusts another one increases the latter 
trustworthiness (for example the trustee’s care or persistence). Knowing this, the 
trusting agent intentionally exploits this process for example by leaving on the desk of 
a subordinate a very critical file. In this case the trace is an implicit signal of the 
intention to trust and is also necessary to create trust because it is a presupposition of 
the dynamic process. The (communicative) action of trusting and delegating impacts 
on the beliefs of the trusting agent that are the bases for the “reliance” decision 
producing the external action of delegating in the first place. 

Differently, this kind of meaning highlights also the possibility of warning without 
words. Mafia’s “warnings” fall for example in this category. The traces of burning, 
destroying, killing and even of hacking a secured server are stigma of true practical 
actions and the harm is a real one. However the basic aim of these behaviors (burning, 
killing, etc.) is informative. It is aimed at intimidating, terrifying via a specific 
meaning: “I’m willing to do this” and also “I’m powerful and ready to act” (see next 
basic message). This meaning is what really matter and what induces the addressee 
(that not necessarily is already the victim) to give up or to fear a given agent. The 
trace is a show down of intentions and power: a “message” to be “understood”. 

3.3   Informing About the Ability 

One of the most frequent messages sent by a normal behavior is very obvious but at 
the same time incredibly relevant:  

I inform you that: “I’m able to do this” 
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When learning to do something for example under the supervision of a teacher, 
each action is also a message to the teacher of one’s own improvements and acquired 
abilities. Similarly, by leaving a trace of one’s action that is observable by others one 
can convey this specific message.  

The expression of one’s ability by practical actions is crucial of course to select 
good partners in a way that can be costly to fake. Consider for example the fighting 
behaviors of animals competing for a female. Although the practical behavior is 
aimed to eliminate or induce the escape of a possible competitor, the fighting 
behavior when successful is also used as a signal of one’s ability and power. In 
general, if showing, displaying, exhibiting and demonstrating are intentional actions 
(or evolved behaviors) then they are always also communicative actions. 

Similarly, in many interactions a behavior is done or a trace is left also to increase 
trust and reputation. In fact, an agent knows that trust (for future interactions) depends 
on current behavior because the behavior will be read as a sign of competences and 
disposition (honesty, loyalty, persistence, etc.). Hence the agent can decide to give 
another one this impression and image for future interactions. But in fact, since the 
agent knows that the behavior is for the others a prognostic sign of one’s own future 
behavior, with the current conduct it is also sent a message. If the agents need to 
choose each other as partners in teamwork activities, then the capacity to leave traces 
of one’s own ability on purpose is a crucial message that can be used to speed up 
partner choices. 

3.4   Informing About the Opportunity for Action 

By leaving a trace, it is also possible to inform about obstacles and opportunities. In 
this case the meaning is: 

I inform you that: “These are the conditions for this action ” 

Lines at the post office provide a lot of information to the newcomer. First of all, 
lines are signs informing about which are the active counters (the condition for 
action). Although this is not an intentional message sent by those who are queuing, 
however, it acquires a communicative function, on which the staff relies. In fact, 
when new electronic information devices are installed, it must be explicitly signaled 
which are the working counters. 

The queue line also informs about the fact that the others are waiting to act; the 
condition for acting is there but not already available. Observable waiting is clearly a 
message that at least the other clients in the line intend the newcomer understand. In 
this case this message is sent on purpose just by maintaining an ordered line (this is 
why they are accurate in this). By understanding the message and start waiting, the 
newcomer too sends the same message again; the line self-organizes and maintains its 
emerging structure. Moreover, the physical shape of the line informs also on who is 
the last waiting person, back to whom the newcomer has to wait.  

3.5   Informing About the Action Accomplishment 

Another core and basic meaning of a trace is:  

I inform you that: “I have done this” 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Trace Signals: The Meanings of Stigmergy 149 

This simple message is extremely important in interactions where, for example, a 
given behavior is expected by another agent. Consider for example, a child showing 
the mother that he is eating a given food, or a psychiatric patient showing to the nurse 
that he is drinking his drug. It is not the fact the one is able to eat or drink that is 
relevant here, but that, as expected, the eating and the drinking have been 
accomplished. It is this kind message is particularly important in the satisfaction of 
social commitments, expectations, and obligations.  

Observable and perceivable traces of action accomplishment are also used for 
coordination. Suppose that you have to move a heavy table with another agent: it is 
natural in this case to use the table itself as a coordination device, and to exploit the 
physical sensations (that you know that the table will transmit to the other and that the 
other will take into account for adjusting his behavior) as messages. Feeling the 
direction and the acceleration that you impose to the table, the other will adjust her 
behaviors on this basis. If one on the contrary had to rely on verbal instructions the 
process would be extremely more demanding and probably impossible. The messages 
might not be precise or fast enough. Moreover they should be decoded and interpreted 
at the symbolic level before being translated into motor-commands blocking the 
coordinated flow in the activity. 

3.6   Informing About the Goal 

The next basic behavioral message is: 

I inform you that: “I have this goal” 

The notion of trace is general enough to cover also situations in which the agents’ 
interaction is mediated by some external artifact (that of course is a part of the 
environment). Consider for example two soccer players that need to coordinate in 
order to pass the ball and score a goal. To let the other understand that one intends to 
perform a specific action among the various alternatives, often a soccer player starts 
acting on the expectation that the other will understand in which direction to go. By 
kicking the ball in one direction, the first player is communicating with the other team 
member what kind of plan is to be performed. In this case, the trace of the action is 
the ball going in a specific direction that is observable by the partner and again in this 
case the communication is supported by a modification of the environment. 

3.7   Informing About the Result 

The last basic behavioral message we are interested to point out is: 

I inform you that: “This is the result” 

Suppose for example that while cleaning the dishes, a glass is dropped and breaks 
into pieces. You decide not to remove the fragments in order to let your husband 
understand that, although he was convinced that they were unbreakable glasses, this 
glass being struck, it breaks. On this behavioral base, the husband can infer that actually 
the glasses are fragile. As it is clear from this example a trace can be an implicit signal 
not only when it is the result of an intentional action (as when you break something on 
purpose to send a message), but also a consequence of an intentional forbearance from 
acting (like in this case, when you abstain from cleaning).  
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4   Descriptive and Directive Traces 

A minimal and very general classification of speech acts distinguishes at least 
descriptive from directive actions [13]. While descriptive actions are assertions about 
the state of the world, directives are regarded as the general class of requests for 
action.  

Apart from direct reference to agency, what is common to all the above implicit 
signals is also that they are very simple descriptive acts. If it can be shown that 
implicit signals can also have a directive use, then a new class of possibility of 
interaction would available also with implicit communication. 

4.1   Limiting What Implicit Signals Can ‘Describe’ 

Even if implicit signals ‘describe’ something, the scope of what can be described in 
this way is limited by the limits of agency. As we suggested with the above examples, 
the state of the world described by a trace signal refers primarily only to the agent and 
her actions. 

It seems however that some of the basic messages outlined above can do also 
something more. In fact, we have claimed, that a trace can also used to inform 
somebody else that an opportunity for action exists (fourth basic message) or that 
action has produced a certain result (seventh basic message). And these messages 
seem to involve a reference to something external to the agent herself pointing to the 
external environment. How is that possible? 

Although a detailed analysis of this problem is beyond the scope of this paper, a 
brief justification is needed. We claim that an implicit signal can at least refer to two 
distinct environmental properties: its enabling property and its dispositional property. 

A behavioral message can in fact refer to the external environment in relation to 
one’s own action because it is also about the condition for or the opportunity to act. 
Although this message seems to refer to something beyond the agent, the environment 
is framed only relative to its possibility for action. This is the enabling property of the 
environment. In fact, if one observes an action or a trace without directly seeing the 
relevant details of the environment supporting the action, the existence of such 
enabling properties relevant to that action can be understood. The enabling property 
of the environment can be behaviorally communicated. Not only one can signal one’s 
own ability to do an action (if you see me wet on the beach you can understand that “I 
am able to swim”), but also the fact that that environment enables that action 
(“Swimming can be done here”, i.e. the water is not to so cold).  

Secondly, one can also signal a property of the environment that is a consequence of 
interacting with it. For example, I can provoke in front of you a new acquaintance to 
intentionally let you understand that he is irascible. In this case, my trace (the fact that 
now he is angry because of my action) is intended to inform you about an aspect of the 
(social) environment. Or I can leave my wallet in a way that you and the other guy see 
it. Because I let him steal money from it, I intend to communicate to you that he has that 
disposition. The wallet left in these conditions triggering a consequence is used as an 
implicit signal a relevant aspect of this consequence. We consider this as the 
dispositional property of the environment (be it the social one like in these examples or 
the physical one like in the previous example of the broken glass) because the 
behavioral message communicates what happens to the environment, if one acts.  
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4.2   Directive Implicit Signals  

It must not be forgotten that, although descriptive, the above behavioral messages are 
in any case aimed to influence the action of the addressees.  

By informing the addressees of some aspect of one’s own individual self-regarding 
action, the addresser intends to modify the action of other agents. On the other hand, 
by mentioning another agent as part of one’s goal, an individual action can also be 
social or other-regarding [3]. To be precise, an implicit communicative action is 
social by definition: the communicating agent has the goal that the other is informed 
about something. But in all the examples the implicitly communicative actions exploit 
the fact that the observer is interpreting just the overt self-regarding aspect of the 
action.  

However nothing prevents the addresser to exploit an overt social action to 
communicate something implicitly. A directive action (i.e. a request) then is just a 
peculiar way to influence another agent by way of signaling the social aspect of one’s 
individual action. 

Suppose in fact that an agent acts in order to facilitate (or hamper) the action of 
somebody else: i.e. by creating the opportunity for action. For example, a mother 
cooks a dinner and leaves it on the table observable to her son when he comes back 
home. Clearly, cooking is a practical action with a practical goal. In this case, the 
practical goal has also a social component because the mother is cooking for her son: 
her goal mentions another agent. The mother has the goal to change the environment 
in order to enable an action of somebody else. The result (the cooked food) then is a 
trace of a practical action that can be used, as every trace, to signal something.  

If the son just understands the trace as the output of his mother self-regarding 
action, then she has informed him of the action result and he independently can use it. 

Differently, if the observing agent is able to infer the social motivation behind the 
action, then the addresser can act precisely to inform the addressee about such social 
goal. Suppose for example that the mother wants her son to keep his diet, she can 
prepare light food on purpose and intentionally avoid cooking any caloric item like 
pasta. Here the intended behavioral message was about she wanting him to eat this 
food, hence an implicit request. If the son gets this information about her social goal, 
he has an additional reason for doing the action precisely because she has requested 
him to do so. Similarly, ashtrays on the tables of coffee shops are both descriptive and 
directive implicit signals. Instead of directly communicating to each costumer what to 
do when smoking, waiters exploit the environment to convey such meaning. The 
ashtray in fact is intentionally used both to inform about a possibility of action and 
about the waiters’ goal that customer use it. Leaving ready to use ashtrays then is 
another case of stigmergic interaction5.  

Differently from descriptives, directive implicit messages aim to influence the 
other agents through adoption by informing of a social goal and by relying on the 
addressees’ decision to pursue it as one’s own [7]. This possibility paves the way for a 
set of new different kinds of implicit communicative acts: from requests, to 
commands and prescriptions. 
                                                           
5 Understanding social goals then seems to enable communicative actions without the need of 

meta-communication (information about one’s communicative intention). 
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5   From Basic to Complex Behavioral Messages 

On the basis of this initial taxonomy we hope to have shown that implicit signals are 
vehicles of several useful messages. Such messages are diverse, can have different 
uses and can be enriched in many ways. 

5.1   Informing About Reasons for Action 

On the basis of the relevant basic message, a basic meaning can be elaborated on the 
basis of contextual and pragmatic inferences.  

A trace of an accomplished action for example can support an inference about 
possible underlying reasons for doing the action. While buying a book, for our own 
pleasure, we in fact leave a strange trace in the environment: we modify the number 
of sold copies. This fact changes the position of the book in the bestsellers list, and 
this is also information (intentionally sent by the publisher or by the booksellers to the 
potential clients) that will be taken into account by other persons. From the fact that a 
number of agents have bought a specific book, potential new buyers can 
pragmatically infer that that book has been evaluated as a good one; hence the 
message is “this is a good book”. 

Although such an action just remains the practical action of buying a book with its 
practical intended effect for the buyers, it is also a piece of communicative behavior. 
In fact, even if the buyer does not intend in this case to inform anybody at all, in that 
market the behavior has acquired a parasitic communicative function that is exploited 
by making the trace observable. Moreover by aggregating various traces the message 
is even intensified in its meaning. 

With a similar mechanism, vengeances and punishments are communicative acts 
too. They have the aim that the addressee understands that the harm is done on 
purpose and for a specific reason. Punishing in particular is intrinsically 
communicative given its ‘teaching’ aim. Punishment is not just a penalty; it is for the 
future, in order one learns, and thus in this case understanding the aim and the 
underlying reason is necessary for punishment to be effective. 

5.2   Explicit and Implicit Messages Interact 

In section 2, we have contended that ants leaving pheromone along their path to food 
are closer to the organizers attaching an arrow on a wall than to the lady leaving the 
coat on the seat to signal her presence. While in all these situations the agents are 
indirectly interacting by an appropriate modification in the environment (by leaving 
pheromone, a arrow or a coat), only the last one was a case of communication with 
trace signals. Both pheromone and arrows are explicit signals. We have also claimed 
that only traces of practical actions not specialized for communicating are real stigma. 
Hence, the suggested conclusion was that pheromone-based communication in itself 
is not stigmergic communication. This conclusion is of course disturbing because the 
concept of stigmergy was precisely introduced to explain this indirect form of 
interaction enabling ants to coordinate in a decentralized manner in the construction 
of a specific trail.  

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Trace Signals: The Meanings of Stigmergy 153 

We argue that what is stigmergic in pheromone-based communication is not the 
explicit message left by dropping it in the environment but the one implicit in using it. 
There is an important implicit meaning in the action of using the pheromone that is 
about the reliability of the pheromone signal itself: “This signal is reliable”. And the 
more the pheromone is used, the more the implicit message is generalized to the 
emergent collective product of the local interactions of the agents such that an 
emergent implicit signal is created like “This trail is good”. 

For an explicit signal to evolve and to stabilize in a population of agents in fact the 
main problem to be solved is precisely its reliability [11]. We suggest that, together 
with other possible mechanisms, implicit signals can be used to make explicit forms 
of communication more effective. In fact the aggregation of the practical actions of 
using one specific pheromone-signal instead of others carries information that is 
difficult to fake. The actions of following one trail are the real actions undertaken by 
the ants and can be used to fake only at a great cost for oneself. 

We are not suggesting that implicit signals are better then explicit ones. However 
what we do claim is that dedicated communications channels should be designed to 
enable a combination with implicit communication processes in order to improve their 
robustness and effectiveness. 

5.3   Different Messages with the Same Trace 

Although for analytical purposes we have distinguished several distinct kinds of 
meanings that a trace-message can send, it is crucial to understand that different 
meanings can often co-exist at the same time in the same trace. A single trace in fact 
brings several messages/meanings in parallel to different addressees precisely because 
it does not adopt neither a dedicated channel nor a specialized explicit signal to carry 
these messages (with their relatively fixed conventional meanings) but exploits 
different interpretations of the behavior by different observers.   

For example, the act of violating a norm can be a communicative act, either 
intentional or even functionally. Consider the aggressive behavior of an extremist 
protester. At the same time, the practical action of breaking the window of a bank 
communicates:  

- to the authorities: “I intend to fight against you”, “I do not respect your 
norms”, “I do not fear you”;  

- to the peers and himself “I do not respect norms”, “Violating is possible”, 
“Do as I do. Follow me” “I’m reliable”, “I’m one of you”;  

- and perhaps to the peers and himself: “Look how audacious I am, I’m skilled 
and strong”;  

- to the others pacific protesters: “you are cowards and integrated”. 

5.4   Tacit Agreements  

Suppose you sit in a coffee shop with your friends but you don’t intend to order 
anything. When the waiter arrives, you feel a sense of uneasiness. Alternatively, 
suppose that you resolve to order but the waiter refuses to serve you. In both 
situations the agents are violating some commitments they have taken. These agents 
have social commitments one to the other without having agreed about anything 
explicitly. 
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The importance of commitments like these in regulating interactions in widely 
recognized in multi-agents systems [8, 18]. However social commitments are always 
modeled as the output of explicit communication processes. Indeed this is not 
necessary. To establish a social commitment of an agent X to another agent Y two 
moves are essential [4]:  

- the move (usually by the commissive speech act of promising) of X creating 
his obligation and Y’s right and expectation and 

- Y’s move of consent, accepting X’s action.  

Both these actions must be communicated. Without such agreement (which creates 
a reciprocal – although asymmetric -commitment) no true social commitment of  
X to Y has been established. This process does not necessarily imply explicit 
communication between the agents. As in the above example, both X’s committing 
act and Y’s consent act can be (and frequently are) tacit. 

One can characterize the principle of implicit committing as follows: 

IF 
there is mutual knowledge between X and Y about an expectation of Y about an 
action of X (where an expectation is a belief about a future state or action plus a 
goal about the same state or action) [12]; 
and 
X intends to do that action also because he knows about Y’s expectation; 
and 
X does not explicitly deny his intention, does not contradict Y’s expectation; 
 
THEN 
X implicitly takes a social commitment to Y for that action; and 
Y is entitled to consider X socially committed to her. 
 
At the same time by relying on X and by letting X to believe so and believe that 
he is committed to Y, Y is implicitly accepting X’s commitment, and agreeing 
about it (principle of implicit consent in social commitment). 

Knowing about the waiter’s expectation about you, your staying at the table is also 
a signal that you intend to order. Staying at the table in an observable way is a sign 
that is so interpreted by the waiter and you if you don’t explicitly communicate the 
opposite you undertake an obligation to order. At the same time, because the waiter 
does not explicitly refuse your action, is implicitly accepting it and so he becomes 
committed to accept it when you place your order.  

This mutual “understanding” among the agents is necessary and intended. Social 
commitments always requires communication but not necessarily explicit; on both 
side tacit communication can be enough and, as in the example, traces of one’s 
presence can be used to deliver the messages. 

6   Conclusion 

In this paper we have sketched several arguments to support the relevance of using 
agents’ traces as implicit signals of behavioral messages. We have provided a 
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taxonomy of basic behavioral messages that can be indirectly communicated and we 
have individuated two possible uses of such communication: descriptive and 
directive. Finally we have also indicated some interesting directions in which simple 
behavioral messages can be enriched towards more complex meanings.  

Stigmergy, the process of indirect communication of behavioral messages with 
implicit signals, is proposed as a powerful and flexible mechanism with the following 
characteristics:  

- It is a form of communication that is situated and exploits the capacity of 
agents to understand each other actions and the environment. If one 
understands action of others in sensory-motor terms then communicating in 
this way facilitates situated interaction in the environment; 

- However its situatedness is also its main limitation. Stigmergy is limited signal 
the here and now and to the this and that. To deliver more abstract and distant 
messages more symbolic means of communication are needed; 

- Many messages can be delivered with a single trace. The relevance of the 
behavioral message that one is communicating is again a contextual problem. 

- Although often broadcasting, stigmergy is mainly dyadic: I inform (all of) you 
about me and I inform (all of) you about my goal about (all of) you. Stigmergy 
can be used to describe something about the communicator and also to deliver 
directive communicative action towards the addressees; 

- There is a primitive reference to the external world but only seen as an 
opportunity for action or about how it changes when acting. However 
properties of the environment in itself (i.e. the general topology) or that are not 
directly tied to the present action are not in its scope;  

- Trace signals are more reliable because one has to really act and can be used 
to reinforce the reliability of cheap arbitrary signals (interaction with symbolic 
communication); 

- More generally stigmergy can be exploited also by other coordination 
mechanisms like normative systems to facilitate the interaction process 
between the agents. 

Our primary aim with this explorative paper was to convince the reader of the 
ubiquity and relevance of this phenomenon for many aspects of social life. This very 
same intention is also shared by Parunak in [16] who, however, does not distinguish 
explicit from implicit signals. We hope to have argued effectively for the relevance of 
studying implicit signals as a first level phenomenon. We cannot evaluate if we have 
met this objective, and so we at least intend to leave a trace about this attempt to 
signal an important direction of future research.  
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Abstract. The notion of environment as a first class abstraction in
Multi–Agent Systems (MAS) has affirmed itself both as a necessary el-
ement of the related models and systems, and as useful source of con-
cepts and mechanisms for their design and implementation. However,
the functions and responsibilities that the environment should accom-
plish in different application contexts are still under debate in the agent
research community. This paper is focused on agent-based simulation
and in particular on the regulation function of the environment, which
is a crucial factor supporting the enforcement of the required level of
realism in the dynamics generated by the simulation system. In partic-
ular, the paper shows that the MAS based simulation context provides
features that require a peculiar balance between agent autonomy and
environment control on the overall system dynamics.

1 Introduction

The term environment was considered since the very first definitions of agent,
agent-based system and Multi–Agent System (MAS). Nonetheless, only recent
research efforts highlighted the fact that the environment for a MAS can be
much more than external resources and a mere communication infrastructure,
and it should be considered as a necessary element of MAS models and systems
as well as an exploitable abstraction [1].

Even if several successful examples of agent-based models, systems and ap-
plications that effectively build on agent environment and related abstractions
and mechanisms can be found (see, e.g., the proceedings of the first and second
E4MAS workshop [2,3]), there is still an open debate on the functions and re-
sponsibilities that the environment should accomplish. While the fact that the
support to agent interaction is delegated to a specific infrastructure and not
to an agent is generally agreed upon, there are several aspects of agent interac-
tion, especially in direct agent interaction approaches (e.g. management of social
knowledge [4]), that are managed by particular agents whose only goal is to sup-
port other active entities in the overall system (i.e. middle agents). In this kind
of approach, agent environment represents little more than a message passing
infrastructure.

D. Weyns, H.V.D. Parunak, and F. Michel (Eds.): E4MAS 2006, LNAI 4389, pp. 157–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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However, in specific situations one of the requirements on the overall system
could provide properties to be enforced, even to the point of limiting agents’
autonomy imposing rules and laws (e.g. to reify organizational abstractions reg-
ulating access to resources, or even security policies) on the overall system. In
this kind of scenario, it can be more convenient (or even necessary) to extend
the environmental responsibilities to manage all agents’ actions that can have
a direct influence on other entities in the system [5]. In other words, all ac-
tions that do not strictly pertain to the autonomously determined change of
an agent’s state should be carried out it the environment, and they should be
actually checked against its rules and policies.

While system regulation and management are in general very relevant issues,
especially in open multi–agent systems in which agents may be highly heteroge-
nous and (in general) not benevolent, these aspects are even more crucial in
agent–based simulation systems. In fact, while a key aspect of an agent–based
approach to modeling and simulation is the fact that the overall system dynam-
ics are generated by means of the interaction of autonomous entities composing
it, there can be specific aspects of the simulated systems that do not pertain
to single agents but rather characterize the overall system. When simulating,
for instance, the movement of autonomous entities roaming in a physical space,
according to the desired precision on its representation and on the position of
these entities, it could be necessary to enforce a non–interpenetration rule. The
enforcement of this specific rule can be delegated to agent’s behavioural specifi-
cation (e.g. “do not move in a place that is already occupied by another agent or
object”), only under the assumption of the existence of a notion of turn and a se-
quential activation of agents. In general, the enforcement and enactment of this
kind of system rules cannot be delegated to agents, i.e. micro level entities, and
it requires a controller at some higher level. In other words, system regulation
is typically delegated to agents’ environment.

On the other hand, the introduced example highlights one of the issues in
defining and designing general models and mechanisms for MAS–based simula-
tion, that is, a peculiar balance between agents’ autonomy and environmental
control. In fact, the presence of specific rules in the simulated reality may lead
to totally different modeling approaches, and also on radically different notions
of agents and their possibility to decide, not only on the choice of actions to be
carried out but also on the moment in which they should be carried out. The
idea that an agent is not provided with a thread of control of its own, and that
it has to be triggered in order to carry out its own perceptions and actions is
in contrast with most definitions of agent, but it is quite commonly adopted in
MAS–based simulation approaches and systems.

This paper is going to discuss the regulation function delegated to the en-
vironment in the specific context of MAS–based simulation by focusing on the
problem of agent activation. The following section will introduce motivations
and peculiarities of this area of application, while Sect. 3 will discuss the role
of environment in MAS–based simulation. Section 4 will then discuss the bal-
ance between agents’ autonomy and environment control due to its regulation
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function, with specific reference to agents activation strategies. Conclusions and
future developments will end the paper.

2 Agent-Based Simulation: Motivations and Peculiarities

Computer simulation represents a way to exploit a computational model to eval-
uate designs and plans without actually bringing them into existence in the real
world (e.g. architectural designs, road networks and traffic lights), but also to
evaluate theories and models of complex systems (e.g. biological or social sys-
tems) by envisioning the effect of the modeling choices, with the aim of gaining
insight of their functioning. The use of these “synthetic environments” is some-
times necessary because the simulated system cannot actually be observed, since
it is actually being designed or also for ethical or practical reasons.

Several situations are characterized by the presence of autonomous entities
whose actions and interactions determine (in a non–trivial way) the evolution of
the overall system. Agent-based models are particularly suited to represent these
situations, and to support the study and analysis of topics like decentralized de-
cision making, local-global interactions, self-organization, emergence, effects of
heterogeneity in the simulated system. The interest in this relatively recent ap-
proach to modeling and simulation is demonstrated by the number of scientific
events focused in this topic (see, to make some examples rooted in the computer
science context, the Multi Agent Based Simulation workshop serie [6,7,8,9,10,11],
and the Agent-Based Modeling and Simulation symposium [12]). Agent-based
models have been adopted to simulate complex systems in very different con-
texts, ranging from social and economical simulation (see, e.g., [13]) to logistics
optimization (see, e.g., [14]), from biological systems (see, e.g., [15])) to traffic
(see, e.g., [16,17,18]) and crowd simulation (see, e.g., [19]).

This heterogeneity in the application domains also reflects the fact that, espe-
cially in this context of agent focused research, influences come from most differ-
ent research areas. Several traffic and crowd agent models are deeply influenced
by physics, and the related models provide agents that are modelled as particles
subject to forces generated by the environment as well as by other agents (i.e.
active walker models, such as [20]). Other approaches to crowd modeling and
simulation build on experiences with Cellular Automata (CA) approaches (see,
e.g., [21]) but provide a more clear separation between the environment and the
entities that inhabit, act and interact in it (see, e.g., [22,23]). This line of re-
search lead to the definition of models for situated MASs, a type of model that
was also defined and successfully applied in the context of (reactive) robotics
and control systems [24,25]. Models and simulators defined and developed in the
context of social sciences [26] and economy [27] build on different theories (often
non–classical ones) of human behaviour in order to gain further insight on it and
help building and validating new theories.

The common standpoint of all these approaches is the fact that the analytical
unit of the system is represented by the individual agent: the overall system
dynamic is not defined in terms of a global function, but rather the result of
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individuals’ actions and interactions. On the other hand, it must also be noted
that in most of the introduced application domains, the environment plays a
prominent role because:

– it deeply influences the behaviours of the simulated entities, in terms of
perceptions and allowed actions for the agents;

– the aim of the simulation is to observe some aggregate level behaviour, that
is actually observed in the environment.

Besides these common elements, the above introduced approaches often dra-
matically differ in the way agents are described, both in terms of properties and
behaviour. A similar consideration can be done for their environment.

3 Environment in Agent-Based Simulation

Weyns et al. in [1] provide a definition of the notion of environment for MASs,
and also discuss the core responsibilities that can be ascribed to it. In particular,
in the specific context of simulation the environment is typically responsible for

– reflecting/reifying/managing the structure of the physical/social arrange-
ment of the overall system;

– supporting agent perception and situated action (it must be noted that agent
interaction should be considered a particular kind of action);

– maintain internal dynamics (e.g. spontaneous growth of resources, dissipa-
tion signals emitted by agents);

– define/enforce rules.

Agent–based models and simulators that are based on a physical approach gen-
erally consider agents as particles subject to and generating forces. The environ-
ment comprises laws regulating these influences and relevant elements of the
simulated system that are not agents (e.g. point of reference that generate attrac-
tion/repulsion forces). It is the environment that determines the overall dynamics,
combining the effects that influence each agent and applying them generally in dis-
crete time steps. In this cycle, it captures all the above introduced responsibilities,
and the role of agents is minimal (according to some definitions they should not
be called agents at all), and running a simulation is essentially reduced to com-
puting iteratively a set equations (see, e.g., [20,18]). In situated MAS approaches
agents have a higher degree of autonomy and control over their actions, since they
evaluate their perceptions and choose their actions according to their behavioural
specification. The environment retains a very relevant role, since it provides agents
with their perceptions that are generated according to the current structure of the
system and to the arrangement of agents situated in it. Socioeconomic models and
simulations provide various approaches to the representation of the simulated sys-
tem, but are generally similar to situated MASs.

It is now necessary to make a clarification on how the notion of environment
in the context of MAS–based simulation can be turned into a software archi-
tecture. Klügl et al. [28] argue that the notion of environment in multi-agent
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Fig. 1. A schema introduced in [28] to show differences and relationships between
simulated and simulation environment (a), and a three layer deployment model for
situated MAS introduced in [30] highlighting the crosscutting abstractions agent and
environment(b)

simulation is actually made up of two conceptually different elements: the simu-
lated environment and the simulation environment. The former is a part of the
computational model that represents the reality or the abstraction that is the
object of the simulation activity. The simulation environment, on the other hand,
is a software infrastructure for executing the simulation. In this framework, to
make an explicit decoupling between these levels is a prerequisite for good engi-
neering practice. It must be noted that also a different work [29], non specifically
developed in the context of agent-based simulation, provided a model for De-
ployment Environment, that is the specific part of the software infrastructure
that manages the interactions among agents.

Another recent work is focused on clarifying the notion of MAS environment
and describes a three layered model for situated MAS environments [30]. This
work argues that environmental abstractions (as well as those related to agents)
crosscut all the system levels, from application specific ones, to the execution
platform, to the physical infrastructure. There are thus application specific as-
pects of agents’ environment that must be supported by the software infrastruc-
ture supporting the execution of the MAS, and in particular the MAS framework.
Figure 1 compares the two above described schemas.

The fact that the environment actually crosscuts all system levels in a deploy-
ment model represents a problem making difficult the separation between sim-
ulated environment and simulation infrastructure. In fact, the modeling choices
can have a deep influence on the design of the underlying MAS framework and,
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vice versa, design choices on the simulation infrastructure make it suitable for
some MAS and environment models but not usable for other ones. As a result,
general MAS framework supporting simulation actually exist, but they cannot
offer a specific form of support to the modeler, although they can offer basic
mechanisms and abstractions.

SeSAm, for instance, offers a general simulation infrastructure but relies on
plugins [28], for instance, for the definition of spatial features of the simulated
environment with the associated basic functions supporting agent movement
and perception in that kind of environment. With reference to Figure 1 (b),
such a plugin would be associated to the Application Environment module, in
the MAS application layer. However, these aspects represent just some of the
features of the simulated environment, that can actually comprise rules and laws
that extend their influence over the agents and the outcomes of their attempts
to act in the environment.

4 Law Enforcement: Autonomy vs. Control

The specification of rules or laws for agents’ environment represents a constraint
to their actions. In order to verify the compliance of agents’ actions to the
aforementioned laws, the environment must be able to react to these actions,
either accepting them and possibly changing the overall state of the system or
rejecting them, applying some kind of policy to manage these exceptions. Such
a policy could provide the fact that the environment informs the agent of the
rejection of the previously chosen action (possibly indicating the reason of the
rejection) and asks the agent to select another one. Another policy could simply
cause the agent not to act, skipping the “action turn”. The way agents are
activated and their actions are managed, in other words what Weyns et al. call
model for action [31], has of course a deep impact on the possibility of expressing
laws of the environment. A seminal work analyzing this aspect of the dynamics of
a MAS is the influence and reaction model by Ferber and Müller [32]; more recent
works by Weyns and Holvoet elaborate on the previous model [33], introducing
introducing regional synchronization of actions.

The following subsection will adopt an abstract sample situation, i.e. a model
of agents moving in a discrete environment, to elaborate this topic in the specific
context of simulation.

4.1 Agent Movement and Conflicts

Let us now consider a model for the representation of entities situated and mov-
ing in a physical space. The model provides a discrete abstraction of this environ-
ment, and in particular a lattice such that each cell can be occupied by at most
one entity; moving entities are modelled as agents, and are only characterized
by their position (a pair 〈x, y〉 representing its row and column in the lattice).
This requirement maps to a specific law for the environment, that provides the
fact that at most one agent can be situated in a cell at a given moment. To
control the compliance of agents’ actions to this law, agents must communicate
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Fig. 2. Different kind of conflicts on agent movement in a discrete environment: in (a),
agents A and B wish to move towards the same cell; in (b) agent A would like to move
to an occupied cell, and this is forbidden by the “hop or stop” policy; in (c) agent D is
blocked since its movement is crossed by the path of agent C, and this violates the “no
crossing path” policy; in (d) a similar pair of actions is allowed, since the “sub–steps”
policy is adopted and there are no conflicting sub–steps

their chosen movements to the environment, that will decide if the action can be
accepted (and consequently change its structure) or it should be rejected. In the
terminology adopted in [5], agents’ movements can be considered as organiza-
tion events, and the environment must be able to analyze and respond to these
events. Finally, let us suppose that the system evolves through discrete time
steps: there is a notion of turn and every agent can perform an action per turn.

Figure 2 (a) shows a sample situation in which one of the actions (respectively
chosen by agent A and B must be rejected and prevented by the environment,
since it would lead to an inconsistent state. The same Fig. but in (b), depicts
a different situation, in which agents’ actions are not single movements from a
cell to an adjacent one (i.e. one that is part of Von Neumann neighborhood),
but several subsequent movements of this kind, starting from the current posi-
tion. This kind of situation is due to the fact that the modeled entities can be
characterized by a different maximum velocity (i.e. number of single movements
per turn). However, according to the order of activation of agents, there is a
possible conflict between the movement of agent C and agent D. In fact, they
can potentially require to occupy the same cell at the same time.

This kind of conflict has been analyzed in [34] in the context of crowd modeling
and simulation with a CA approach, but those considerations are also relevant
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to a situated MAS approach. Some relevant possible policies for the management
of this kind of conflict are the following:

– “hop or stop”: a movement action issued by an agent should be accepted if it
does not lead to an inconsistent state, i.e. if it does not provide the presence
of two agents in the same cell. If such a conflict arises, one of the conflicting
actions is refused and the associated agent simply does not act; Figure 2 (b)
presents a sample application of this kind of policy: the action of agent A is
rejected, while other agents are allowed to perform their moves;

– “no crossing paths”: a movement action should be accepted unless at least
one cell of the related path is also included in a path associated to another
agent. Even in this case, if such conflict arises, one of the conflicting actions
must be refused, and the related agent does not act. Figure 2 (c) presents
a sample application of this strategy; in particular, the action of agent D is
not allowed, since the associated path would cross the path of agent C;

– “sub–steps”: actions are divided into atomic steps (i.e. single movements
from a cell to an adjacent one), and they are examined at this level. Those
providing paths that do not present sub–steps conflicting with those of other
agents’ actions will be accepted, other ones will be ended before generating
an inconsistent situation (i.e. not necessarily all the action is discarded).
Figure 2 (d) shows a sample application of this kind of policy, that allows
crossing paths, as long as the associated movements don’t violate the non
interpenetration law, but agent B cannot perform its whole action because
the last sub–step would violate this law.

It must be noted that the choice on the particular policy for the management
of conflicts on agent movement plays a relevant role in determining the level of
realism of the dynamics generated by the simulation.

However, it must also be noted that the fact that a notion of turn exists,
and that each agent performs a single action per turn, does not represent a
precise specification of the model operation. In fact, there may be different ways
of regulating the activation of agents inside a given turn, and specific choices
about this point could simplify or even prevent the management of conflicts.

4.2 Strategies for Agent Activation

A schema summarizing the possible strategies for agent activation is shown in
Fig. 3.

The traditional definitions and conceptions of the term agent stress the fact
that an agent must be provided with a thread of control of its own, and this case
is represented by the concurrent activation strategy. Agent, when this strategy
is adopted, do not necessarily need an external triggering stimulus, but can be
activated endogenously. In general, there is no notion of turn or any form of
control on fairness or ordering of agents’ actions. However, in the context of
simulation, for sake of realism, fairness (or, more generally, a degree of control
on how frequently agents effectively act), and in general in order to obtain results
that can be analyzed and compared to actual data for sake of calibration and
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Agent
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Concurrent Turn-based

Parallel Sequential

Fig. 3. A diagram showing the hierarchy of possible agent activation strategies

validation the notion of turn is a necessary feature of the simulation model. When
a concurrent agent activation strategy is adopted, the notion of turn must then
be introduced as a special case of agent coordination by using the environment
itself as a medium for coordination [35]. Figure 4 shows a sample interaction
among agents and the environment, in a concurrent agent activation strategy.
In particular, Agent-2 acts first (carrying out the internal action 1); in order
to assure fairness, it signals the environment that it has carried out an action.
Agent-1 then emits a signal (e.g. a pheromone or a computational field) that the
environment suitably diffuses in its spatial structure. Since there is no constraint
on agent activation, Agent-2 decides to act and tries to emit a signal, before other
agents (e.g. Agent-n) were able to carry an action for that turn. The environment
will not carry out this action (and might even block the execution of Agent-2),
until all agents executed one action for that turn. Supposing that Agent-n is
the last one acting in the current turn (trying to move in the spatial structure
of the environment, action n): as a consequence to this action, the environment
will advance the turn (operation n.2), manage the necessary internal processes
(e.g. pheromone evaporation), and it will eventually manage the second signal
emission of Agent-2. The need of enforcing fairness among agents and causing
them to act according to a notion of turn, obviously limits the parallelism of
agents execution.

It is thus quite common the adoption of a turn–based agent activation strat-
egy, in which agents are activated by an external trigger generated by the en-
vironment. Agents can carry out one or more actions per turn, according to
a given criterion (e.g. agents are characterized by a speed that determines the
number of actions they can perform each turn). However, there are many ways
to activate agents in order to support their perception, the choice of the actions
to be performed, and finally to effectively compute the effects of their actions.
Agents could perceive the same situation, decide their actions and then act in a
conceptually parallel way, such as in a CA. On the other hand, agents may be
sequentially selected (according to a predefined or randomly generated order) to
select their action, that can be carried out immediately in/by the environment.
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Fig. 4. An example of interaction among agents and the environment in a concurrent
activation strategy

With reference to the example introduced in Sect. 4.1, it can be noted that a
parallel agent activation could be suitably adopted for “hop by hop” or “no cross-
ing path” policies, since they treat movement actions as atomic (even if they are
made up of a set of basic single movements from a cell to an adjacent one) and the
policy provides to cause one of the conflicting agents to skip its turn. To manage
these policies with this agent activation strategy would mean to check for viola-
tions before modifying the state of the system and choose (according to a prede-
fined priority or randomly) which actions to reject in order to solve conflicts.

The “sub–step” policy would be more difficult to manage in this way, since it is
focused on fragments of action. Adopting a sequential agent activation strategy
the turn is implicitly fragmented in a number of slots n equal to the number of
agents actions. However, the turn could be subdivided into a higher number of
slots n =

∑
a∈A va where A is the set of agents and va is the velocity of agent

a. It would be now possible to select and activate an agent and carry out a sub–
step, checking that no conflict is generated, in order to enforce the “sub–step
policy”. Moreover, if agents were triggered every sub–step in order to choose a
basic movement action, instead of selecting once their whole path for the turn,
it would be possible to delegate them this check (i.e. include in their behavioral
specification the fact that occupied cells must not the selected as destinations),
preventing conflicts.

There is thus a deep relationship between the adopted agent activation strat-
egy and the way environmental laws can be expressed and enforced. Moreover the
choice on agent activation strategy can also determine to which extent agents can
contribute in law enforcement (by respecting the rules, from a local point of view).

5 Conclusions and Future Developments

This paper has discussed the regulation function of the environment in the con-
text of MAS based simulation. In particular, after presenting a brief of overview
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of this specific context of application in the agent research area, and after hav-
ing discussed the role of the environment in this kind of application, the paper
focused on the peculiar balance between agent autonomy and environmental
control on agents’ actions, and even on agents’ activation, that is necessary to
assure the desired level of realism in most simulation contexts. In particular, a
specific example (i.e. the modeling of agents situated and moving in a physical
space) was adopted to show the relevance of the choice of an agent activation
strategy on the possibility of enforcing the laws of the environment.

The adoption of an agent-based approach to modeling and simulation is still
relatively young, especially compared to other approaches such as those inspired
by physics and those based on CA. Agent-based approaches can provide a be
more expressive and less constrained framework to represent and manage com-
plex systems, and relevant results were already obtained, but further work is
necessary to be able to formally define models and mechanisms that can be used
to design general MAS–based simulation system. Foundational works like [33]
and [36] represent the first steps in this direction, that also provides a set of
methodological and design challenges.
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Abstract. This paper is part of a long term research program on multi-
agent systems (MASs), based on the proposition that the interactions
among the members of a large and heterogeneous system of autonomous
agents need to be governed by a global and strictly enforced law ; and
that such laws need to be local, so that they can be complied with at
the locus of each agent—without having any direct information of the
coincidental state of other members of the MAS. Such concept of law
has been realized under our LGI coordination and control mechanism.

This paper shows how local laws over a MAS can be used to establish
global and aggregate system properties in a scalable manner; where by
“aggregate properties” we mean properties defined over the coincidental
interactions among several, possibly many, members of a given multi-
agent system.

1 Introduction

This paper is part of a long term research program on multi-agent systems
(MASs), based on the proposition that the interactions among the members
of a large and heterogeneous system of autonomous agents—whether software
agents or people—need to be governed by a global, overarching, law ; and on the
proposition that such a law needs to be enforced, and the enforcement should
be done in a decentralized manner, for scalability.

As we have shown in [1], decentralized enforcement of a law of a distributed
MAS requires the law to be formulated in a local manner, so that it can be
complied with at the locus of each agent—without having any direct information
of the coincidental state of other members of the MAS. Given that the law
of a MAS is to be uniformly enforced over all the members of the MAS, it
obviously has global consequences, despite its local nature. This is analogous to
the local (differential) laws of physics, which have global consequences such as
conservation of energy.

But can a local law be used to establish aggregate system properties, defined
over the coincidental interactions among several, possibly many, members of a
given multi-agent system. This is the question addressed in this paper.
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Theoretically, the answer to this question is affirmative. In fact, we have shown
in [2] that the local formulation of laws does not reduce their expressive power.
But this result has been derived via a construction that adds an extra agent to a
given MAS, which is employed as a centralized reference monitor that mediates
all interactions between the members of the MAS, and can thus enforce arbitrary
aggregate properties. Unfortunately, while formally local, the resulting law would
not be scalable, defeating the purpose of localization. This makes the theoretical
proved generality of local laws less than satisfying.

This paper is a more practical study of the effective expressive power of local
laws. We will demonstrate here that at least some—and we believe many, if not
most—aggregate properties of a MAS can be implemented via strictly local laws,
involving only a minor degree of centralization, whose effect on the scalability
of law enforcement is negligible.

We couch our discussion of this issue in terms of the coordination and control
mechanism for multi-agent systems called law-governed interaction (LGI), which
has been designed according to the above stated propositions. This mechanism
has been introduced in 1991 [1], implemented experimentally in 1995 [3]; and
after several extensions, such as in [2], it has been released for public use in [4].

The rest of this paper is organized as follows. We start in Sect. 2 with a
motivating example of a policy that involves aggregate properties. In Sect. 3 we
provide an overview of the LGI mechanism. In Sect. 4 we show how the aggregate
properties of our example can be established by means of an LGI law. This is
followed with brief discussion of related works in Sect. 5, and with conclusion in
Sect. 6.

2 An Example

Consider a large distributed enterprise E, which spans a large geographical area.
Suppose that the management of this enterprise decided to provide its employ-
ees with the ability to conduct confidential and orderly discussions among them-
selves, free from any danger of intervention or eavesdropping by the management.
For this purpose, a policy called CD (for “confidential discussion”) has been de-
fined, which is to govern all such discussion groups, to be called CD-communities.
The policy CD is stated informally below:

1. Only employees of enterprise E who do not belong to management are per-
mitted to be members of a CD-community.

2. The members of a given CD-community address each other via their self-
chosen aliases, and members cannot infer the eName of its peers, or their
LGI-addresses, from their aliases.

3. The alias chosen by a member of a CD-community must be unique, in the
following senses: (a) no two community members can have the same alias;
and (b) each employee can choose just one alias, preventing a single employee
from participating under two different aliases.

4. Each community member should have access to the entire membership of his
community (that is, to the entire list of aliases) at any given moment in time.
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Points 1 of this policy ensures that people not employed by the given enterprise,
or people employed by the enterprise as managers, cannot participate in any CD-
community, nor can they eavesdrop on any discussion within such a community.
Note that this point involves a subtle sensitivity to the environment in which
this community operates, sensitivity of the general kind advocated in [5] (we
will support this particular sensitivity by means of digital certification). Point 2
ensures anonymity of the participants in any given CD-community, and thus
personal confidentiality. Finally, Points 3 and 4, ensure a reasonable order in the
discussion conducted by the members of a given CD-community. (All told, this
is a minimalistic policy, which, as we shall see later, can be used as a basis over
which more sophisticated policies can be defined).

Note that this is a global policy, with some inherently aggregate provisions,
such as Point 3 of this policy that requires uniqueness of member aliases, and
Point 4 which requires access of each member to the total community member-
ship. This policy can be easily enforced via a central regulator that mediates all
exchange of messages between members of an CD-community. But we will show
that it can be done in a virtually decentralized, and thus scalable, manner, by
specifying policy CD via a local LGI law.

Finally, we point out that that this is not just a toy example, as it deals with
issues that appear frequently in multi-agent systems. Some broader perspectives
over this example are discussed in Sect. 4.1.

3 An Overview of LGI

Law-Governed Interaction (LGI) is a message-exchange mechanism that allows
an open and heterogeneous group of distributed actors to engage in a mode
of interaction governed by an explicitly specified and strictly enforced policy,
called the “law” of this group. By “actor” we mean an arbitrary process, whose
structure and behavior is left unspecified. An actor engaged in an LGI-regulated
interaction, under a law L, is called an L-agent (or simply an “agent,” when the
identity of the law does not matter); the messages exchanged under a given law
L are called L-messages; and the group of agents interacting via L-messages is
called an L-community. LGI turns a set of disparate actors, which may not know
or trust each other, into a community of agents that can rely on each other to
comply with the given law L. This is done via a distributed collection of generic
components called private controllers, one per L-agent, which need to be trusted
to mediate all interactions between these agents, subject to a specified law L (as
illustrated in Figure 1).

A prototype of LGI was released in October 2005 [4]; this section provides
only a very brief overview of LGI. For more information, the reader is referred
to the LGI tutorial and manual, available through the above mentioned website,
and to a host of published papers.

The Concept of Law Under LGI. LGI laws are formulated in terms of three
elements, called: regulated events, control-state, and primitive operations—which
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are defined in the context of each agent operating under LGI. Only an abstract
description of these elements is provided here.

Regulated Events (or, simply, events) constitute the domain of LGI laws.
They are the local events that may occur at an individual agent (called the
home of the event at hand), whose disposition is governed by the law under
which this agent operates. All regulated events are related to inter-agent
interactions. They include arrived events, which represent the arrival at the
home agent of a message from the outside; and sent events, which represent
the attempt by the home agent to send a message. There are additional
regulated events whose relevance to interaction is less direct. One of them
is the adopted event, which represents the birth of an LGI agent—more
specifically, this event represents the point in time when an actor adopts a
given law L to operate under, thus becoming an L-agent.

Control-State (or, simply, state) of a given LGI agent represents a function of
the history of its interaction with other LGI agents. This function, mapping
history of interaction to a state, is defined by a specific law. For example, if
the number of messages already sent by a agent is somehow relevant to the
law under which it operates, then this law would have to mandate maintain-
ing this number as part of its state. That is, the semantics of the control-state
is not universal, but is defined by a specific law.

Primitive Operations (or, simply, operations) are the actions that can be
mandated by a law, to be carried out in response to the occurrence of a
given regulated event. These operations can be classified into two groups.
First, there are communication-operations that affect message exchange be-
tween the home-actor and others. These include the forward operation that
forwards a message to another agent, and the deliver operation that allows
the home-actor to actually receive a message that arrived on its behalf. Sec-
ond, there are the state-operations that affect the state of the home-agent.
These, and other operations to be introduced later, are called “primitive”
because they are meant to be carried out if and only if they are mandated
by the law.

The role of a law L under LGI is to decide what should be done if a given event
e occurs at an agent x operating under this law, when the control-state of x
is s. This decision, which is called the ruling of the law, can be represented by
the sequence of primitive operations mandated by the law, to be carried out,
atomically, at x. More formally, the concept of law can be defined as follows:

Let E be the set of all possible regulated-events, let S be the set of all
possible states, and let O be the set of all primitive operations, then a
law L is a function:

L : E × S → O∗ (1)

In other words, the law maps every possible (event, state) pair into a sequence
of primitive operations, which constitute the ruling of the law.

Several observation about this definition are in order: First, this definition does
not specify any mechanism for enforcing LGI-laws, and does not even require
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enforcement. Indeed, the concept of law under LGI, like the concept of social
law, is quite meaningful even if one leaves it up to individual agents to comply
with it voluntarily. In our case such compliance means, in particular, that every
agent subject to a law L carries out the ruling of this law for every regulated
event that occurs in it. However, LGI does provide an enforcement mechanism
for its laws.

Second, the above definition of the concept of law is abstract, in that it does
not depend on the language used for specifying the function that constitutes a
given law. This level of abstraction is useful for two reasons. First, it allows one
to understand the basic properties of LGI, independently of the complexities of
the language used for specifying its laws. Second, this abstraction provides LGI
with a useful flexibility regarding the language actually used for specifying laws.
In particular, it allows LGI to support multiple law-languages, while maintain-
ing essentially the same semantics. Indeed, the current implementation of LGI
supports two law-languages, based, respectively, on Prolog and on Java. In this
paper, however, we will use an informal pseudo-code for describing laws, to be
introduced later.

Finally, note that, as stated in the introduction, the law as defined above
is local, so that it can be complied with at the locus of each agent—without
having any direct information of the coincidental state of other members of the
MAS. This is because all the elements over which the law is defined—namely,
the events, the operations and the state—are all defined locally at each agent.

An Informal Language for Specifying Laws. In this paper laws will be
described via a pseudo-code consisting of event-condition-action rules, which is
similar to the formal Prolog-based law language of LGI.

The event-condition-action rules that constitute the pseudo-code have the
form:

UPON e IF c DO [o],

where e is an event; c is an optional condition, defined over the event itself, and
over the state of the home-agent; and [o], the action, is a list of one or more
primitive operations, which constitute the ruling of the law.

The Decentralized Law-Enforcement of LGI. The enforcement of a given
law over the community is carried out by a distributed set {Tx |x ∈ C} of
controllers , one for each member of community C . Structurally, all these con-
trollers are generic, with the same law-enforcer E , and all must be trusted to
interpret correctly any law they might operate under. When serving members
of community CL, however, they all carry the same law L. And each controller
Tx associated with an agent x of this community carries only the local control-
state CSx of x , while every L-message exchanged between a pair of agents x and
y passes through a pair of controllers, Tx and Ty (see Fig 1).

Due to the local nature of LGI laws, each controller Tx can handle events that
occur at its client x strictly locally, with no explicit dependency on anything that
might be happening with other members in the community. It should also be
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Fig. 1. Interaction via LGI: Actors are depicted by circles, interacting across the
Internet (lightly shaded cloud) via their private controllers (boxes) operating under
law L. Agents are depicted by dashed ovals that enclose (actor, controller) pairs. Thin
arrows represent messages, and thick arrows represent modification of state.

pointed out that controller Tx handles the events at x strictly sequentially, in
the order of their occurrence, and atomically. Finally we point out that the law-
enforcement mechanism ensures that a message received under law L has been
sent under the same law; i.e., that it is not possible to forge L-messages. As
described in [6], this is assured by the following: (a) The exchange of L-messages
is mediated by correctly implemented controllers, certified by a CA specified
by law L; (b) these controllers are interpreting the same law L, identified by
a one-way hash H of law L; and (c) L-messages are transmitted over crypto-
graphically secured channels between such controllers. Consequently, how each
member x gets the text of law L is irrelevant to the assurance that all members
of CL operate under the same law.

The creation of LGI-agents, and their naming. Given a controller T ,
an actor A may generate a new L-agent by sending what is called an adoption
message to T , thus adopting it for operating its controller, under a specified law
L. In response, T would create a new controller, subject to law L, identifying it
by a local name n (unique among the names given to the other private controllers
already operating on T ).

This new controller, and the agent it represents, are henceforth known by the
name ‘‘n@dName(T)’’ where dName(T) is the domain-name of the controller T ,
such as ‘‘ramses.rutgers.edu’’. This name—for example joe@ramses.rutgers.
edu—is the LGI address of the newly formed agent, to be used by other agents
for communicating with it.
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The Hierarchical Organization of Laws. LGI provides for laws to be
organized into hierarchies, a facility designed for the modularization of com-
plex laws, and to support such things as coalitions of institutions, and complex
organizations such as enterprises. A hierarchy, or tree, of laws t(L0), is rooted
in some law L0. Each law in t(L0) is said to be (transitively) subordinate to its
parent, and (transitively) superior to its descendants. Given a pair of laws N
and M in t(L0), we write N≺M if N is subordinate to M.

Semantically, the most important aspect of this hierarchy is that if N≺M
then N conforms to M, in the sense that law N satisfies all the stipulation of
its superior law M.

LGI provides a very efficient mechanism, outlined in [7], for constructing such
law-trees, in a top-down manner. This is done as follows. The root L0 of a hierar-
chy is a normal LGI law, except that we create it to be open for refinements, by:
(a) allowing it to consult a collection of rules designed to refine it—called a delta;
and (b) taking the advice returned by this delta into account, when computing
its ruling. The refinement of law L via the delta produces a regular LGI law L′.
L′ could be closed to further refinements—which produces a hierarchy of depth
two; or L′ could further consult other deltas at a lower level, thus producing
a cascade of refinements, and a hierarchy of arbitrary depth. In brief, each law
L′ in a hierarchy t(L0) is created by refining a law L, the parent of L′, via a
delta L̄′, a collection of rules1.

4 A Virtually Decentralized Implementation of the CD
Policy

We describe here a law LCD that implements the informally stated policy CD in-
troduced in Sect. 2. For simplicity, this law is written in our pseudo-code language.
This law is also overly simplistic, in that it does not handle exceptions, which is
important to do when dealing with message passing, and for which LGI provides
ample tools, and it is missing certain minor details, as we point out later. How-
ever, a completed version of this law, written in our executable Java-based law-
language, is published via http://www.moses.rutgers.edu/lcd1/Lcd.java1.

The LCD law is written under the assumption that the enterprise E in ques-
tion employs a certification authority (CA), called eCA, which issues identity-
certificates to its employees. Each such certificate is supposed to authenticate
an employee, identifying his official name in the enterprise, called his eName,
which we assume to be unique; and specifying the position of this employee in
the enterprise, such as whether he or she is a manager.

We start with a brief overview of the structure and behavior of the community
operating under LCD . First, this community contains a distinguished agent called
the secretary, denoted by S, which serves both as the registrar of the community,
and its name-server. The secretary maintains in its control-state (CS) a set of

1 This is somewhat analogous to inheritance of classes, except of the strict constraint
of conformance between a superior law and its subordinates.
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member profiles, each represented by a triple 〈N, A, L〉, where N is the eName of
an employee, A is the alias by which this member is to be known to others in this
community, and L is the LGI-address used for communication by the underlying
LGI mechanism. The aggregation of these profiles in the CS of S would allow
law LCD to ensure the uniqueness required by Point 3 of our policy.

The other members of this community communicate with the secretary S ,
mostly for two purposes: (a) to register with it, thus becoming an active member
of the community; and (b) to get from S the ID of other community members,
where the ID is a pair 〈A, L〉, which is the member-profile of that member, as
maintained by S , without its eName. Each community member maintains in its
control-state a set (cache) of such IDs, called the acquaintance list (or aList) of
this agent. This cache maps aliases, used for explicit addressing of members under
this law, into the the LGI-addresses used by the underlying LGI mechanism. We
will see later how the aList is populated, but as long as one communicates with
members whose alias exists in one’s aList, the communication is direct, and does
not involve the secretary.

We will now discuss the operations of the CD-community in greater details,
showing how it is governed by law LCD . This discussion is organized into a
sequence of short paragraphs dealing with different aspects of this community,
such as: joining the community, interacting with peer agents, and leaving the
community. But we start with law LCD itself.

Law LCD that Governs Confidential Discussion Communities. Like all
LGI laws, law LCD , displayed in Figure 2, consists of two parts: the preamble,
and the body. The preamble is a small set of declarative clauses, which specify
such things as: the name of the law (”CD,” in this case); the language in which
the law is written (not specified here, but could be either Prolog or Java); one or
more trusted CAs, identified by their name under this law, and by their public
keys (this is done for ”eCA,” in this case); and some aliases, used to simplify
notations2 (in this case, the alias ”secretary” for the LGI-address of the agent
that serves this role).

The body of the law is its algorithmic part. In this paper, the body is described
by a sequence of numbered, and informally stated, event-condition-action rules,
as defined in Sect. 3. Each of these rules is followed by a comment, in italic. These
rules are executed by the controller associated with each agent, whenever a regu-
lated event occurs at this agent; these rules are executed sequentially, from top to
bottom. The rules of this particular law are discussed in some detail below.

Joining the CD community. Two steps are required for an employee e to
join a CD-community, and be able to communicate with its other members.
The first step would create a new LCD -agent whose control-state contains the
authenticated eName of its actor, provided that this actor is a normal employee
of enterprise E, and not a manager. But this new agent is inactive, as it cannot
communicate with other members of the CD-community, except the secretary S.

2 Note that the keyword “alias” here is not the “alias” used elsewhere in the paper.
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IF (myEName = eName) and (active = true) DO [forward; quit]
The home agent leaves the community.

R8. UPON sent(source, quit(eName), secretary)

When the message arrives at the home agent, the controller would deliver the message 
only if the home agent is an active member, and is the intended destination; 
it would update the local aList if the ID of the source agent is not included.

by sending a message including its eName and a proposed alias to the secretary. 

The home agent is activated to be an active member.

IF (myEName = eName) DO [forward]

R3. UPON arrived(secretary, activate(alias), dest)
                   DO [deliver; active = true; myAlias = alias]

R2. UPON sent(source, join(eName,alias), secretary)

The home agent applies to be an active member,

Preambles:

END IF
END IF

R6. UPON sent(source, M, destAlias)

destLGIAddress = getAddressFromAList(destAlias)

enhancedMessage = msg(source(myAlias), dest(destAlias), M)
DO[forward(source, enhancedMessage, destLGIAddress)]

END IF
ELSE

END IF
return an exception message to the source agent

R7. UPON arrived(source, msg(source(sourceAlias),dest(destAlias),M), dest)

DO[deliver(sourceAlias,M,destAlias)]
IF (the ID of the source agent is not in aList)

update aList 

alias(secretary, secretary@rutgers.edu)
authority(eCA, keyHash(hash−of−key−of−eCA)) The CA trusted by the enterprise 

The address of the secretary

The name of the law 

IF (active = true) 

IF (destLGIAddress is not null) 

When an actor attempts to send a message to another agent,
the controller would forward the message only if the home agent is an active member,
and it would piggyback the aliases of both the sender and the receiver on the message.

IF (active = true) and (myAlias = destAlias) 

law(CD)

The home agent must be authenticated upon adoption in order to join the community.

R1. UPON adopted(issuer, subject, attributes([entName:eName;position:position]))
IF (issuer = eCA) and (position =/= manager) DO [myEName  = eName]

END IF

R4. UPON sent(source, getID(alias), secretary) 
IF (active = true) DO [forward]

The home agent looks up the ID of another agent, by its alias. 

The home agent gets the ID from the secretary, and saves it in the local aList.

R5. UPON arrived(secretary, id(alias, LGIAddress), dest)
                    IF (active = true) DO [save id(alias,LGIAddress) in aList]

ELSE self−destruct

Fig. 2. A fragment of LCD

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Establishing Global Properties of MASs Via Local Laws 179

The second step, if successful, would activate the agent in question, by providing
it with an official alias, and allowing it to communicate with its peers.

The first step is to select an LGI-controller, and have it adopt law LCD—thus
creating a new LCD -agent, which we call here x. The first event in the life of the
new agent is the adopted event, handled by Rule R1 of LCD . This rule requires
the adoption message sent by e to its controller to contain a certificate signed
by eCA, and this certificate is required to contain two attributes: position and
entName.

Now, if the value of the position attribute in the submitted certificate is
not manager then the value of the entName attribute is assigned to the myEName
variable of the CS of x. But if the position attribute of the certificate indicates
that this employee is a manager, then Rule R1 will cause an exception message to
be sent to employee e (not shown in Figure 2), and the newly formed LGI-agent
would self destruct. This is in conformance with Point 1 of the CD policy, which
allows only non-management employees to participate in this community.

At this point the newly created agent x is inactive, in the sense that it cannot
do anything but send a message join(eName,alias) to the secretary S—which
is the second step of joining an LCD -community. The event of sending the join
message is handled by Rule R2 of LCD , which ensures that the first argument of
this message is identical to the variable myEName, and is thus the authenticated
eName of the employee in question.

Note that the rules of law LCD that deal with the arrival of messages (such
as join) at S, and with the responses of S to such messages, are not shown
in Fig. 2, for simplicity3 But the effect of sending the join message to S is as
follows: when this message arrives at S , S would check that both the eName and
the alias are unique in the CD community. Note that these condition—required
by Point 3 of the CD policy—are checked with respect to the set of member-
profiles, of all active community members, maintained by the secretary. If this
condition is satisfied, S would send the message activate(alias) to x.

When a message activate(alias), sent by S, arrives at x, it would be handled
by Rule R3. This rule would save the value of alias in a variable myAlias in the
CS of x; and it would set a variable active in the CS of x to be true. This would
make x a fully active member of the CD-community, as we shall see below.

Populating the Acquaintance List (aList). As has already been pointed
out, for a member x to be able to send a message to another member y, it
needs to have its ID 〈alias, LGIaddress〉 in its aList, which serves the role of
an addressing cache. This cache is populated in two ways:

First, by requesting, and obtaining, an ID , or a whole set of them, from the
secretary. As depicted in Fig. 3, an active member x can send S a message
getID(y), where y is an alias of the member whose ID is being requested. The
sending of this message is handled by Rule R4, which forwards it to S, provided
that x is an active member. The secretary will reply by sending x the requested

3 Note again that the complete law LCD is published through
http://www.moses.rutgers.edu/lcd1/Lcd.java1
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Agent x Agent y

M −> y

getID(y)

getID(y)

Save y’s ID 

msg(source(x),dest(y),M)

aList 

...] 

[(Alex, x, a1@c1),
 (Tom, y, a2@c2), ...]

ID(y,a2@c2)

−> a2@c2

[(y,a2@c2) 

Controller c1 

[(x,a1@c1) Look up 
y’s address in its aList in its aList

Save x’s ID 

Controller c2 

L CD L CD

Fig. 3. Communication between two active members

ID , if any. When this reply arrives at x, it would be handled by Rule R5, which
would store the new ID in the CS of x. In a similar fashion x can ask for the
set of IDs of all current members of the community (but this capability is not
shown in Figure 2).

The second way for the ID of y to be added to the aList of x, is for y to send
any message to x. We will see how this is done next.

Communication Between the Members of a CD-Community. Exchange
of messages among members of the CD-community are regulated by Rules R6
and R7. By R6, a message M sent to destAlias would not be forwarded to any-
body if (a) if the sender is not an active member, or (b) if the sender does not
have an ID 〈destAlias, L〉 in its aList. However, if both of these conditions are
not satisfied; that is, if the sender is an active member, and if it does have the
right ID, then the following message would be forwarded to the LGI-address L
associated with the destAlias:

msg(source(myAlias),dest(destAlias),M).

Note that this message carries the aliases of the sender and of the target, along
with the original message M—it is called an “enhanced message”.

By Rule R7, when the enhanced message arrives at its target y the message M
carried by it is delivered to its actor only if (a) y is an active agent, and if (b) y is
the agent identified by the destAlias carried in the enhanced message. Also, if
the aList of y does not contain the ID of the sender, then this ID will be added
to it. However, if either of these conditions is not satisfied, then an appropriate
exception message would be sent to the sender. We will not elaborate here on
the various possible reasons for the above to conditions to fail. But one of them
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is that an employee may change the LGI-address from which it operates. More
about this possibility below.

Migration of Agents. An important advantage of symbolic addressing via
aliases, is that it abstracts out the actual IP-address from which one operates.
This allows an employee to migrate, from one computer (and controller) to an-
other, without requiring any change in how he is addressed by others. But,
such migration requires the member profile maintained by the secretary to be
updated. This is done as follows:

After an agent moves from one controller to another, its actor must submit its
certificate again, to the new controller. If the certificate is valid, the agent would
be authenticated as an enterprise employee and the controller would be able to
obtain its eName. Then the agent would inform S about the address changing,
by sending a message updateAddress(myEName). S would be able to locate the
ID of the agent by the eName and thus update its LGI address. Also, S would
reply a message to the agent, in order to activate it to be an active member, and
to provide the alias it registered before.

Quitting the CD Community. An active member may remove itself from the
CD community at will. It does this by sending a message quit(eName) to S ,
who will identify this member by its eName, then remove it from the list of active
members.

By Rule R8, when sending the message, the law ensures that (1) eName has
been bound to the variable myEName, the certified eName of the home agent, and
(2) the value of the variable active is true, which means the home agent is an
active member of the CD community. The home agent will quit the community
by executing the quit operation, after the message is sent.

4.1 Broader Perspectives

Law LCD is only a special case of a class of laws that can be used in a wide
range of applications. We will mention here two types of such applications, both
of which employ the hierarchical organization of laws provided by LGI, and
briefly discussed in Sect. 3.

Confidential Discussion Groups Operating under Different Rules of
Engagement. Elaborating on the motivation given in Sect. 2 for the CD policy,
suppose that different groups of employees in enterprise E would like to operate
under different kinds of rules of engagement, while conforming to the CD policy
mandated by the enterprise. One group may want to restrict its members to
a specific department, another group may want to establish a version of the
Robert’s Rules of Order suitable for electronic discussion, and a third group
may want to support some kind of secure voting protocol.

This can be done by changing law LCD into an equivalent law LCD ’ that
admits refinements. The above mentioned refinements can then be defined as
subordinate laws to LCD ’, which would thus be guaranteed to conform to the
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enterprise mandated CD policy. The mechanism for creating such refinements is
beyond the scope of this paper, but the interested reader can find the necessary
details in [7].

Symbolic Addressing. The symbolic addressing via aliases provided by law
LCD could be useful in general, and not just in the context of an enterprise. This
is because the LGI-addressing is dependent on the absolute IP-address of the the
controller being used by a given actor, and is difficult to maintain invariant of the
location of the actors itself, which may be mobile. One can provide for symbolic
addressing, by removing from LCD ’ the part that requires authentication via
certificate signed by a specified CA, but allowing it to be further refined, as
discussed above. This would allow the creation of arbitrary laws that conform
to the symbolic addressing capability of LCD ’.

5 Related Work

The LGI coordination and control mechanism for multi-agent systems has been
introduced in 1991 [1]. In the years following this work, several authors consid-
ered the role of laws in multi-agent systems. Some of these, like [8]and [9], view
a law of a MAS as purely a specification device, without any enforcement mech-
anism. Others, such as [10], [11] and [12], did consider enforcement, but not in
a decentralized manner. Moreover, none of these authors used local laws, which
we consider essential to any coordination and control mechanism for multi-agent
systems.

The literature regarding name services, which is the subject of the specific
example used in this paper, is very rich. Suffice it to mention the most promi-
nent name service, in current Internet infrastructure, the Domain Name System
(DNS) [13]. But most of the standard name services, including DNS, do not
provide any control over the community it serves, which is the main advantage
of our approach to this issue.

6 Conclusion

The main objective of this paper has been to demonstrate that a regulatory
mechanism for agent-based systems, which is based on strictly local laws, can
be used to establish globally aggregate system properties with only minor effect
on scalability.

In conclusion, we note that although this paper has bean couched in term of
the LGI mechanism that enforces laws, its implication are not limited to LGI.
Indeed, as we have pointed out, the concept of LGI law can be used for multi-
agent systems, even if one leaves it up to individual agents to comply with the
given law voluntarily. Since voluntary compliance also requires the law to be
local, the ability of such laws to establish aggregate properties is important in
this context as well.
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Abstract. Today, the concept of an environment for multi-agent sys-
tems is in its pioneering phase. Consequently, the development of sup-
porting software technologies is still rather primitive and environment
technologies reflecting a specific world-of-interest to the agent systems
are yet to be developed in full. In contrast, environment technologies that
focus on the agent system itself have been in the agenda of MAS research
from its very start. Electronic institutions are prominent in this respect
for they have been conceived as a type of restricted MAS environment
and have had an engineering technology developed around them. In this
paper we explore how the restrictions currently imposed by electronic
institutions may be overcome when they are seen as a part of a larger
environment where agents act. In particular, we focus on situating elec-
tronic institutions by connecting them to a world-of-interest and how
this process can facilitate full-fledged environment engineering.

1 Introduction

It has become increasingly clear that the applicability of agent technologies re-
quires not only appropriate software agents but also taking into account the
environment where those agents interact. In fact, in many cases the design and
implementation of the environment is the crucial aspect of an application. The
motivation for such focus is readily seen when the purpose of the MAS is to spec-
ify the conventions that structure or organize the interactions of participants –as
when defining an electronic marketplace or what economist do with mechanism
design— when one intends to use MAS technologies either to model social phe-
nomena —as, for example, traffic behaviour— or when testing or experimenting
with the uses just mentioned.

In this paper we are concerned with a particular type of environment, elec-
tronic institutions (e-Institutions), that can be used for all these purposes.
We claim that e-Institutions are well-suited for applications involving “open”
multi agent systems and we have three main developments around the idea of
e-Institutions that allow us to sustain that claim. First a conceptual model
that makes explicit the type of multi-agent systems that may be implemented
as EI, second a language to specify arbitrary e-Institutions and, third, the tools
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to implement and run e-Institutions specified with that language. This paper
presents these three developments and explores how they may be put to work in
order to design and use artificial environments where human or software agents
may interact according to an explicit set of conventions. The paper, however, is
not limited to discussing e-Institutions. It goes a step further and explores the
possibility of operationalising the environment where the e-Institution exists and
the relation between the institution and that world. Although we have discussed
some empirical aspects of establishing the links between an e-Institution and the
world (cf. [10]) and presented some details on how the linking was implemented
in specific examples ([20,19]), in this paper we want to focus on two aspects that
we have not discussed in print before: on the one hand we will explain how we
can use environment technologies to “situate” an e-Institution within its “world-
of-interest”, and on the other hand we will present the tools and means to build
simulation environments for situated e-Institutions.

For these purposes the rest of the paper is structured as follows: First we
present our three main developments on e-Institutions, namely, Sect. 2 discusses
our conceptual model, Sect. 3 the way of specifying e-Institutions and, in Sect. 4,
the way we make such e-Institutions operate. We then present, in Sect. 5, our
ideas on situating e-Institutions in a world-of-interest, how those environments
may be characterized and simulated (Sect. 6). We close the paper contrasting
our proposal with some of the notions about environments discussed elsewhere
in this volume.

2 A Conceptual Model for Electronic Institutions

Loosely speaking, e-Institutions are computational realizations of traditional in-
stitutions (cf. North [12] pp. 3 ss.); that is, coordination artifacts that establish
an environment where agents interact according to stated conventions, and in
such a way that interactions within the (electronic) institution would count as
interactions in the actual world, as Fig. 1 illustrates.

The notion of e-Institution may be expressed more precisely by stating a
conceptual model of e-Institutions that gives ground for their computational
implementation. In order to make the conceptual model operational we hold the
following assumptions:

1. Agent neutrality. Participating entities are agents, in the accepted sense of
being persistent, identifiable, communication-capable humans or software
programs. We do not assume anything about the rationality, capabilities or
intentions but we do assume they are able to communicate with other agents.

2. Dialogical Stance. All interactions are construable as speech acts. We ther-
fore assume that there is a shared language whose semantic and pragmatic
content is somehow fixed by the institution and adopted by the participants.

3. Agent-mediated commitment making. We assume that when participants
communicate with other agents they are able and entitled to establish and
fulfill commitments, and eventually abide by their consequences.
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Fig. 1. e-Institutions create a virtual environment where interactions among agents
in the real world correspond with illocutions exchanged by agents within the restricted
environment. Legitimate illocutions —uttered within the institution— change the state
of the institution and count as actions in the world.

4. Institutional commitments. Only illocutions uttered by participating agents
have effect on the shared environment. The institution is the trustee of the
intended conditions for illocution utterance and effects, hence of the com-
mitments established through agent interactions within the institution.

5. Repetitive Interactions. We assume that it makes sense to institute inter-
action conventions when there are interactions that happen not once but
many times following a regular pattern. Furthermore, we assume that such
patterns of interaction apply not to specific individuals but to any agent
that performs a given role during those interactions. We further assume that
those repetitive interactions may be organized into some hierarchical system
composed by sets of speech acts and relations among these sets.

These assumptions reflect our intuition about what institutions are and how
we intend to implement them. Thus, because of assumption 1, we deal with a
sort of open multi agent systems, i.e., those that are populated by independent,
heterogeneous, self-interested agents whose ownership and accountability may
be other than the environment’s. As a matter of fact we want the e-Institutions
to be an interface that separates the internal behaviour of agents from their ex-
ternal interactions.1 Assumptions 2, 3 and 4 make our lives simple by reducing
the world to what happens inside the e-Institution and restricting to structured
conversations (speech acts and scene transitions) all that may happen there.

1 Note that e-Institutions will be MAS that are open in as much as they admit agents of
unknown origin and internals, but once these agents are inside the EI the behaviour
of the agents is constrained —and to that extent— “closed” by the e-Institution.
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Finally, assumption 5 is there to allow us to “structure” interactions into a net-
work of regulated activities whose conventions apply to individuals performing
a role. Although —as we shall see in Sect. 5— we may want to relax these as-
sumptions in order to get a handle on some extra features, the conceptual model
we are able to build from the five assumptions is practical and general enough
to deal with a large class of MAS environments.

The model we propose ([9,21,5]) makes it possible to specify an e-Institution
through the following components:

– A dialogical framework that defines ontology, social structure and language
conventions.

– A deontological component that establishes the pragmatics of admissible
illocutory actions. This is a set of norms that constrains possible illocutionary
exchanges and manages the obligations established within the institution.

e-Institution is currently operationalized as EI0. In particular, its deontolog-
ical component is specified with two constructs:

– A performative structure that includes a network of scenes linked by transi-
tions between scenes. Scenes are role-based interaction protocols specified as
finite state machines, arcs labelled by illocutions and nodes corresponding
to an institutional state. Transitions describe the role–flow policies between
scenes.

– Rules of behavior that establish role-based conventions regulating commit-
ments. These are expressed as pre and post-conditions of the illocutions that
are admissible in the performative structure of the e-Institution.

Thus a typical e-commerce application like public procurement or auctioning
may be implemented as an e-Institution that incarnates the conventions that
regulate the (verbal) exchanges between buyers and sellers, supervisors, banks,
etc. In such type of applications, the overall activity; for example, contracting
the construction of a school house can be thought of as a play that is organized
as a performative structure by network of sub-activities or scenes : call for bids,
selection of best offer, contract agreement, etc.

The dialogical framework makes explicit those elements that the institution
“speaks about” (chairs, doors, checks, contract, roles (supervisor, auctioneer,
buyer,...), time, etc.) their intended semantics and the other conventions needed
to express those illocutions that will be legitimate in the institution. Each scene
describes an interaction protocol that states what can be said by whom and
under what circumstances, for instance that before a supplier is entitled to make
a bid for building a school house, it has to prove that it is a certified con-
struction company. The high-level layout of the performative structure indicates
scenes and transitions between scenes. These transitions state the conditions
that agents must fulfill in order to move from one scene to another. Those con-
ditions may involve synchronizations, changing roles, unfolding the actions of
the same agent inside more than one scene (i.e., spawning alteroids) and other
analogous situations, hence the depiction of the performative structure may be
a rather complex picture, as shown for example in Fig. 3.
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From an agent’s point of view, two major benefits stem from the use of
this conceptual model of e-Institutions for modelling environments. On the one
hand, e-Institutions help reduce the frame problem for agents. As noted above,
e-Institutions establish conventions on behavior, language, and protocols that
force agents to behave in particular and restrictive ways. In a sense, the envi-
ronment is given structure, so that the agents have an easy comprehension of its
working laws. Think for instance on how auctions or parliaments work: buyers
or MPs know when they can talk, what consequences their acts will have, and
what actions are possible at each moment in time. These restrictions facilitate
the programming of agents, since by restricting the set of actions that agents
have to consider at each moment in time one can address the frame problem by
limiting the set of options that agents have to think about.

In the next two sections we will show how this conceptual model gives rise
to actual e-Institutions through the tools that we have built to specify and
generate e-Institutions, and a middleware that activates the corresponding run-
time e-Institutions to be enacted by actual agents.

3 Specifying Electronic Institutions

To specify an EI we need to deal expressly with three components mentioned
before: dialogical framework, scenes and performative structures. We have a
tool, ISLANDER [6], that allows us to make a graphical specification of those
components and produces an XML file with the specification. That specification
may then be used to build the actual e-Institution or by agent designers to build
agents that conform to the institutional conventions.

3.1 Dialogical Framework

The dialogical framework is specified by enumerating all the roles that inter-
vene in the institution, all the constants that may appear in an illocution and
all the illocutionary particles that may be used. The right hand side of Fig. 2
enumerates the illocutions used in a Vickrey auction These involve two roles
(auctioneer and buyer), some verbs (startauction, offer ,...), some variables
(good, price,...) a function (all), the illocutory particles inform and request
and a “silence” particle (in expression 5). Illocutions, as shown in the same fig-
ure, may also involve variables that may or may not be bound to a given value;
that is indicated by the “!” sign, meaning that the variable is bound to the last
instance or “?”, unbound.

In EI0 dialogical frameworks capture only simple social structures by the spec-
ification of roles and the relationships among them, if any. These relationships
may be involved in the description of scenes and transitions. For example a role
“dancer” in a ball room institution may be specialized into “female” and “male”
dancers and some scene transitions may allow any “dancer” to pass, while the
receiving scene may require only one of the two special types in a given illocu-
tion. In EI0 only static separation of roles is permitted, that is, an agent may
change subsumed roles during a transition but not inside a scene.
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0 (inform (?x auctioneer) (all buyer) (startAuction))
1 (inform (!x auctioneer) (all buyer) (close))
2 (inform (!x auctioneer) (all buyer) (startRound ?good ?price ?bidTime))
3,4 (request (?y buyer) (!x auctioneer) (bid !good !price))
5 [!bidTime]
6 (inform (!x auctioneer) (all buyer) (sold !good ?price ?buyerID))
7 (inform (!x auctioneer) (all buyer) (withdrawn !good))

Fig. 2. An ISLANDER specification of a Vickrey bidding protocol. The left part shows
the transition network whose arcs are labeled by the illocutory expressions on the right.

3.2 Scenes

Scenes are specified as transition networks with one initial state, one or more
final states. Additionally, one or more entry states for each role and one or more
exit states for each role. Illocutions connect states as a way of indicating that
illocutions are the actions that happen inside the institution and that only what
is said –if and when it is a legal illocution– changes the “state” of the institution
as a whole.

For example, Fig. 2 depicts an ISLANDER specification of the VIckrey pro-
tocol for auctioning. In the left part of the figure, w0 is the initial state and
w2 the end state. Boxes indicate that agents enacting a given role (auctioneer
or buyer) may enter (+) or leave (-) certain states. Arcs are labeled by the
illocutory expressions listed on the right part of the figure. Thus, for example,
expression 4 states that an agent (y) acting as a buyer requests the agent (x)
who acts as the auctioneer to accept a bid for the good being offered.

When specifying a scene in ISLANDER, each illocution may have precondi-
tions and postconditions associated, so that the effects of illocutory actions —
commitments— are properly governed by the institution and may be observed by
participants. In practice, these conditions correspond to the rules of behaviour
that individual agents are bound to obey. Scenes may also have some global
conditions associated, like the minimal number of participants needed for the
scene to be enacted or the average clearing price in a double auction.

In addition to well-formedness, ISLANDER takes care of some syntactic scene
consistency checks thus preventing the most frequent miss-specifications such as
incomplete dialogical frameworks, spurious roles, lack of acess and exit states, etc.

3.3 Performative Structure

In its most abstract conception, the performative structure (PS) captures the
conventions that regulate the flow of commitments in an institution. In more
concrete terms, the PS describes the way agents may engage in different activ-
ities. Therefore the PS is made up by scenes and the transitions that connect
those scenes. Recall that scenes already had a scene protocol AND incoming and
outgoing states for the roles involved; well, scene transitions are used to control
how an agent, performing a given role, may pass from a proper exit state in one
scene to a proper entry state in another scene.
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Fig. 3. An ISLANDER specification of the Performative Structure of an institution for
simultaneous auctions. Boxes represent scenes and directed arcs inter-connect scenes
through transition gates (of two types in this example: exclusive —crescents– and
inclusive –half-circles– OR). Arcs are labeled by agent-variables and the roles these are
to play. Moreover, arcs entering a scene are also labeled with a legend that indicate if
transient agents may enter one scene, or one or more scenes of that type, or if a staff
member may create new scenes of that type.

The management of transitions is rich in EI0 because we want to be able
to implement institutions where agents may be in two places at the same time
(bidding in two auction houses that open the same hours), that institutional
staff open scenes whenever needed, or that a given scene becomes closed once
every participant has left. ISLANDER is able to express all these functionalities
and the designer needs only point and click to enable them in a PS.

For example the performative structure depicted in Fig. 3 defines the re-
lationships between the usual activities during the enactment of an auction.
In this case —in addition to the initial and final scenes that are necessary
in all e-Institutions— there are four basic scenes: Admission, ItemRegister,
Auctioninfo, Auction, all depicted as boxes. Scenes are connected with di-
rected arcs that come out of a scene, reach a transition (crescent-like figures)
and then leave a transition into another scene. Staff members are present in all
scenes, and therefore all scenes have in-arrows and out-arrows labeled with a
staff or auctioneer (one kind of staff member). Likewise guests may either
be buyers or sellers and although they enter the Admission scene as guest ,
they leave it either as seller (into the ItemRegister scene) or as buyer (into
auctioninfo). Because this separation of roles is strict, the transition between
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the Admission scene and the other two is an “exclusive” transition, while the
transition between the Admission and Final scenes is a direct (inclusive or)
transition through which all staff and guest agents may go through. Since,
by design, in this institution there may be simultaneous auctions taking place
in different rooms and the same agent may be present in more than one room,
the performative structure shows a transition from the ItemRegister scene that
allows a staff member to become an auctioneer and open new Auction scenes,
and a buyer may leave the Auctioninfo scene and enter one or more Auction
scenes or proceed directly to Final.

4 Running Electronic Institutions

How can we implement and run an ISLANDER specified EI?
Implementation can be seen as a three-stage process that includes reinterpret-

ing the conceptual model so that it may become operational through agents and
an actual, functioning, computational realization of the particular e-Institution
specified using ISLANDER. For the deployment of the actual e-Institution and
its activation we rely on the software we have developed and is describe below.

The implementation process is the following:

1. Translate our specification model into the corresponding execution model as
follows:
– e-Institutions are populated at run-time by heterogenous, self-interested

agents.
– Agents interact within scenes via speech acts.
– Agents move from scene (activity) to scene (activity).
– The execution of an institution can be regarded as the execution of its

different scenes (activities).
2. Deploy two types of internal (or institutional). First, we will need staff agents

that are intended to perform all the actions that institutional staff is enti-
tled and enabled to perform; second, we will attach to each external agent
an institutional “governor” that controls all the information flow between
the (external) agent and the institution and is thus able to enforce the insti-
tutional conventions that the external agent is bound to observe in addition
to insulating the institutional environment from potential misbehaviour of
the external agent (see Fig. 4).

3. Insert an “institutional environment” between the agents and their (com-
municative) interactions to fulfill three essential functions: i) mediation, ii)
coordination and enforcement, and iii) information management.

We have assembled an “Electronic Institution Development Environment”,
EIDE [1] that includes all the software tools needed for deploying an ISLANDER-
specified e-Institution.

The core of EIDE is an institutional engine, AMELI ([6]), that generates a
run-time middleware for the agents that participate in the enactment of a given
institution. The middleware is deployed to guarantee the correct evolution of
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Fig. 4. Governors wrap around external agents and control information flows between
these and the e-Institution. Governors keep track of the institutional state and update
it when a valid illocution passes through them from an agent to the institution or back.

each scene to warrant legal movements between scenes and to control the obli-
gations or commitments that participating agents acquire and fulfil and, finally,
the middleware handles the information agents need within the institution. The
AMELI generated middleware mediates between agents in order to facilitate
agent communication within scenes. Broadly speaking, AMELI achieves those
functions because, on the one hand it generates the staff agents and the institu-
tional governors that mediate all communications with external agents and, on
the other hand, handles all the institutional communication traffic by wrapping
illocutions as messages that are handled by a standard agent-communication
layer (e.g., JADE) as illustrated in Fig. 5.

Another EIDE tool, aBuilder, takes an ISLANDER specification and pro-
duces for each role that may be played in the institution an “agent skeleton”.
Those skeletons comply with all the conventions of the specified institution, in
particular with its dialogical framework and the performative structure, and
are compatible with the governors that are automatically produced at run time
by the AMELI middleware. Hence, external agents may be built form scratch
—based on the XML specification of the e-Institution— but they may also be
readily built —on top of the aBuilder skeletons— by programming the decision
means associated with illocutions and having the skeleton take care of navigation
and communication within the e-Institution. The aBuilder tool is convenient for
prototyping agents and (as will be seen in Sect. 6) to use agent skeletons to
produce parametrized agents for modeling and testing institutions. In addition
to AMELI and aBuilder, two more tools are part of EIDE: A simulation tool,
SimDei, is used for animation and analysis of ISLANDER specifications and
a Monitorig tool provides a graphical depiction of all the events that happen
during the enactment of an e-Institution.

5 Situating Electronic Institutions

Today, the concept of an environment for multi-agent systems is in its pioneer-
ing phase. Consequently, the development of supporting software technologies
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Fig. 5. An agent middleware for e-Institutions (AMELI) lays between participating
agents and an agent communication infrastructure (e.g. JADE) composed of internal
agents of two types: governors and staff agents

is in an early stage. Existing applications typically incorporate ad hoc imple-
mentations while analysis reveals how they may benefit from a more mature
environment technology – e.g. from its time and resource management services.
Environment technologies reflecting a specific world-of-interest (WoI) – e.g. a
transport or manufacturing system – to the agent systems are yet to be de-
veloped in full [27]. In contrast, the environment technology that focuses on
the agent system itself is being addressed by research already. e-Institutions are
prominent in this respect [1].

Research into e-Institutions has been pioneering MAS environments for sev-
eral years [11]. As shown in preceding sections, e-Institutions do not address
the environment services and functionalities. Instead, as stated in Sect. 2, the
research has focused on the norms and laws that apply to the agent society
in a given dialogical environment. Thus, E-Institutions are a technology to en-
force, monitor and encourage these norms and laws. Typically, they constrain
the trajectories in the environment to the set of trajectories that are considered
desirable, safe, acceptable, and/or manageable. Thus, the technology makes the
agents in their agent society behave according to the needs and requirements of
their environment.

And yet, is this enough? The answer is ”not quite”. Notice that, as pointed
out above, MAS applications are usually concerned with some external WoI in
addition to the agent society issues. The WoI is application-specific and refers
to the part of the world that is relevant to the MAS application. For instance,
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Fig. 6. Linking EIs with a world-of-interest

for a climate control application, the WoI comprises rooms, doors, heaters, etc.
Therefore, it is necessary to extend the notion of e-Institution in order to link it
with the notion of WoI. In this manner, participating agents will be able to sense
and act over the WoI. Notice though that external agents cannot directly sense
and act over the WoI. Instead, and likewise all interactions of external agents in
the realm of an e-Institution, sensing and acting over the WoI is also mediated
by the e-Institution wherein they interact. To summarise, what we propose is: (i)
to directly situate2 e-Institutions; and (ii) to indirectly (via mediation) situate
external agents.

Figure 6 depicts how an e-Institution controls the interactions between the
external agents and the WoI. The E-Institution is regarded as part of the en-
vironment and is still realised, as already shown in Fig. 5, by a collection of
so-called staff agents. External agents only interact through the environment
via dialogical actions that are filtered in or out by their governors. Thus, ex-
ternal agents can only sense and act over the entities in the WoI through
their governors. Figure 7 details how to plug an entity into AMELI so that
agents can subsequently sense/act over it. AMELI requires the implementation
of a Java interface, the so-called EInstitutionService, per entity to incor-
porate into the platform all methods to operate on a given entity. Thereafter,

2 We understand by situatedness the property of an AI program being located in an
environment that it senses. Via its actions, the program can select its input, as well
as change its environment.
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Fig. 7. Linking EIs with a world-of-interest

different interfaces to acces the service can be incorporated into AMELI as im-
plementations of the ServiceProfile interface. These service profiles can be
regarded as different views to the service. In Fig. 7, we provide a service exam-
ple based on the electricity market in [23]. The service MarketForecast offers
several forecast methods —expected demand (getDemand), expected energy pro-
duction (getProduction), expected Kw price (getExpectedPrice)— as well as
a method to retrieve past market price on a particular date (getPrice(Date
d)), set the contract information corresponding to a market cleared by the
market operator (setClearing(Contracts c)) to be employed by subsequent
forecasts. The ForecastProfile profile only allows external agents to obtain
information about past market prices on particular dates, and the expcted en-
ergy demand and production. The motivation to consider different profiles is
that the very same e-Institution may require that external agents have different
views to the very same service depending on their roles. For instance, profile
ForecastProfile can be further split so that only consumers can access the
production forecast, whereas only producers can access the demand forecast.

The flexibility of the notion of e-Institution comes from its clear separation of
concerns between the internal behavior of agents and their external interactions
(environment modeling). The environment modeling outlined in Sect. 3 and 4
does change once the situatedness of e-Institutions is taken into account. Hence,
from the perspective of an agent, its environment is modeled as the result of
composing the following elements:

– A number of agents (usually called staff agents) that model/expand their
human counterparts in the real world or that simply behave according to an
internal model.

– A number of norms that restrict the behaviour of agents preventing them
to behave in unacceptable/impossible ways. In this respect norms can be
thought as physical laws or as social conventions that shape/constraint the
evolution of interactions that may or may not take into account the WoI.
For instance, in an electricity market the market operator may either oblige
each power station to supply its spare production if the produced power is
less or equal than the market demand, or it may prohibit energy producers
to operate on the network when the operator detects thermal overloads.
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– An explicit agreement on language and ontology. Since illocutionary acts are
the only actions permitted within an e-Institution, it fits well with the MAS
configurations where real entities are represented/expanded by an agent that,
in the case of e-Institutions, will be using illocutions as its action repertoire.
Notice that the very same language is used for sensing/acting over the WoI.

– An explicit set of activities. Scenes represent tasks solved by groups of agents
and are nodes within the performative structure that models the flow of
agents. Actions within scenes are further fixed as a protocol that will only
permit certain dialogues among the agents. Agents are restricted (by social
conventions or physical laws) in what they can do at a particular moment
in time. Such restrictions may now take into account the WoI. Furthermore,
an agent’s actions within a scene may now have consequences as: (i) changes
to an agent’s institutional state (e.g. a consumer agent may have its credit
diminished after winning an auction); (ii) changes to the institutional state
(e.g. the average market price does change after a market clearing occurrs);
and (iii) actions over the WoI (e.g. the thermal load of an electricity network
changes after an energy producer agent delivers its supply to the network).

On the other hand, the fact that external agents have governors as their unique
means of sensing and acting over the environment makes agents neutral to the
WoI. In other words, external agents are unaware of how entities in the WoI are
sensed by the e-Institution wherein they take part. And thus, changes to the
services connecting entities to AMELI have no impact whatsoever on the inner
architecture of external agents.

6 Environment Simulation

At this point we are ready to engineer E4MAS based on the notion of situated
e-Institution. Nonetheless, as environment engineers, we must wonder whether
our MAS application is to behave as expected. Checking the properties of an e-
Institution is a highly intricate and computationally expensive task, as illustrated
by [29,28,8,7]. Such checking becomes even more complicated when adding a WoI
composed not only of static entities (e.g. a database), but also of dynamic entities
endowed with varying behaviours (e.g. a heater, a weather forecast service).
Hence, it would be desirable for environment engineers to count on dynamic
verification tools that help them analyse the dynamic behaviour of their MAS
applications. At this aim, in what follows we detail the tools we have developed
to simulate environments created as situated e-Institutions.

We regard an environment simulation as the result of coordinating an e-
Institution simulation and a WoI simulation as illustrated by Fig. 8. As to
simulating an e-Institution we employ an extended version of SimDei (formerly
introduced in [1]). SimDei allows to run discrete event simulations of AMELI
along the lines of multi-agent simulations produced with the aid of libraries like
Repast [16]. As to WoI simulations, we must choose the modelling simulation
tool (e.g. Simile [24], Simulink [25], EJS [4])that best fits the WoI features; for
instance, the entity connected through the service depicted in Fig. 7 must be
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Fig. 8. Simulating situated EIs

modelled and simulated by some system dynamics simulator. Finally, it is neces-
sary to glue the e-Institution simulation with the WoI simulation so that agents
in an e-Institution can sense and act upon the simulated WoI. This motivates
the introduction of the simulation bridge (see Fig. 8), a software component
whose main purpose is: (i) to synchronise both simulators; (ii) to forward WoI
variables’ values to SimDei; and (iii) to translate actions within the simulated
e-Institution into WoI actions. Notice that the implementation of the simulation
bridge depends on the particular simulator we choose to simulate the WoI. At
present, we do offer implementations of the simulation bridge to connect SimDei
simulations to either Simulink [25] or EJS [4] simulations.

In order for the environment simulation to properly work, environment en-
gineers are required to design simulations according to the simulation design
workflow depicted in Fig. 9. Such workflow requires that an environment engi-
neer performs the following tasks:

– [1] Islander specification of an e-Institution as explained in Sect. 3.
– [2] WoI model describing the dynamics of the entities in the WoI.
– [3] Agent skelentons’ specification with the aid of aBuilder [1], the soft-

ware tool for agent development included in EIDE that supports the graph-
ical specification of agent skeletons based on Islander specifications.

– [4] SimDei configuration. It is composed of: (i) parameters to generate
populations of agents based on agent skeletons; and (ii) the observation vari-
ables, namely the objects to probe in the simulation along with the functions
to employ to combine their observed values.
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Fig. 9. The simulation design workflow

– [5] Simulation bridge configuration. It is composed of: (i) inital set-
tings for the entities in the WoI; (ii) entities to probe in the WoI; and (iii)
translation rules from institutional actions into WoI actions.

We believe that the generation of agent populations deserves special atten-
tion. The software tool aBuilder supports the specification of parametrised agent
skeletons. Thus, an agent’s action can be parametrised in two ways: (i) by defin-
ing whether an action is carried out or not as a parameter; (ii) by defining
(some of) the actual values of each action as parameters. SimDei can exploit
parametrised agent skeletons to generate agent populations by setting the num-
ber of agents to create from a given skelenton along with the means to set up
values for their parameters. Figure 10 illustrates how to generate a population
of buyer agents from the Buyer skeleton for an electricity market. SimDei will
randomly generate between 50 and 100 buyer agents that shall assess the values
of their price and kw parameters using two different Normal distributions.

After the design stage, at run time, SimDei, the chosen WoI simulator, and the
simulation bridge are concurrently launched. SimDei starts by generating agent
populations using agent skeletons created with aBuilder. Thereafter, SimDei
feeds AMELI with an Islander specification to run it in simulation mode. SimDei
also employs AMELI’s monitoring tool to display the observed variables. The
simulation bridge synchronises SimDei with the WoI simulator using its

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



E4MAS Through Electronic Institutions 199

Fig. 10. Generating agent populations with SimDei

translation rules to reflect agents’ actions over the WoI and observing the entities
to probe in order to convey the values of variables to SimDei.

We argue that several benefits stem from our approach to environment simu-
lation. Firstly, SimDei promotes multi-agent simulation from the programming
level to the graphical specification level along the lines of graphical simula-
tion tools (e.g. PowerSim [15], Arena [2], Simulink [25] or Simile [24]) unlike
multi-agent simulation tools like Repast [16] or Swarm [26]. Secondly, we ob-
serve that it is unusual that multi-agent simulation libraries do offer organisa-
tional/institutional patterns that provide higher levels of abstraction to program-
mers, and if so (like [16]) they are quite limited. SimDei handles institutional
patterns at the simulation level unlike state-of-the-art multi-agent simulation
tools like [16,26]. Thirdly, a wide range of modelling and simulation tools can
be employed together with SimDei whenever the appropriate simulation bridge
is available. Notice that in order to plug a simulation bridge to an e-Institution
simulation it must implement a generic API defined by SimDei. Lastly, notice
that external agents within an e-Institution are neutral to the simulation tool
employed for the WoI since all their sensing and acting is mediated by the
e-Institution.

7 Discussion

A review of the other papers in this volume gives us ground to contrast some
strengths and weaknesses of e-Institutions for engineering E4MAS.

First of all, we are confident that the approach of e-Institutions is appro-
priate for E4MAS whenever the intended MAS requires social structure and
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regulation, as is the case for the approaches reported in [3,14]. In both instances
e-Institutions would provide a set of alternative modeling constructs for an alter-
native design and implementation. For example, the notions of space and mode
in [3] could be mapped into scenes and social roles. The notions of rules and
reaction rules in [14] could also be readily captured in our framework. Namely,
reaction rules regulating agent softbodies may be expressed as norms and as
postconditions of agents’ actions —within scenes— that change agents’ institu-
tional states, whereas rules may be translated into the specification of scenes
and transitions.

Second, although e-Institutions do provide the means to enact a social struc-
ture, they do not include any means to structure the WoI. Thus, in particular,
our framework offers no means of structuring the entities of the WoI according
to a particular topology. Nevertheless, it is still possible to structure the WoI in-
directly through an e-Institution: scenes provide locality by regulating the access
to some entities in the WoI, while transitions between scenes model the change
of locality –for example, in an auction house, the bidding scene takes place in-
side a bidding-hall and buyers move from there to a delivery hall (scene). In
other words, by relating scenes with entities in the WoI we locally situate these.
Therefore, a performative structure can be regarded as a way of building a social
topology on top of a WoI.

Third, the approach in [22] based on the filtering of perceptions raises a very
important issue concerning the regulation of perception in an e-Institution. So
far, the focus of our framework has been to regulate agents’ actions with the
purpose of assessing whether they are institutionally valid or not. Thus, although
e-Institutions offer a language to specify such regulations along with a software
platorm, AMELI, to implement them, we do not provide the same degree of
functionality to regulate perceptions, yet.

Fourth, we would like to point out that the work on artifacts [13,17] is the
approach closer to e-Institutions. And yet, there are two significant differences
among these approaches: (i) e-Institutions are tailored to a particular –even
if large– family of applications while artifacts are claimed to be more generic;
(ii) e-Institutions are a well established and proven technology that includes a
formal foundation, and advanced engineering and tool support. For artifacts,
these features are still in a preliminary phase.

Finally, we are decidedly in favour of: (i) designing reference architectures
that provide a blueprint for developing software architectures for MAS along
the lines of [30]; and (ii) building development tools to engineer computational
environments along the lines of CArtAgO [18] and EIDE [1]. We regard both
activities as complementary because we are aware that although —as discussed
in [27]— a development tool like EIDE can help develop a wide range of MAS
configurations, at least for the time being it is hard to envision a general purpose
development tool for computational environments.

It is our belief that the approaches to E4MAS reported in this volume outline
several promising paths to future research, we would like to issue a call for further
joint developments.
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29. F. Viganò. A framework for model checking institutions. In Proceedings of the
ECAI Workshop on Model checking and Artificial Intelligence (MOCHART IV),
2006. To appear. Available from: www.istituti.usilu.net/viganof.

30. Danny Weyns and Tom Holvoet. A reference architecture for situated multiagent
systems. In Weyns et al. [31]. To appear.

31. Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors. Environments
for Multi-Agent Systems III. Springer Verlag, 2007. To appear.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Spatially Distributed Normative Infrastructure

Fabio Y. Okuyama1, Rafael H. Bordini2, and Antônio Carlos da Rocha Costa3
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Abstract. In previous work, we introduced an approach to describe and simu-
late environments for situated multi-agent systems, based on a language called
ELMS. Here, we present extensions to our approach which provide the means to
allow normative information to be distributed in environments shared by multiple
agents. Organisational structures for multi-agent systems are usually defined in-
dependently of any spatial or temporal structure. Therefore, when the multi-agent
system is situated in a spatial environment, there is usually a conceptual gap be-
tween the definition of the system’s organisational structures and the definition of
the environment. Spatially distributing the normative information over the envi-
ronment is a natural way to simplify the definition of organisational structures and
the development of large-scale multi-agent systems. By distributing the norma-
tive information in different spatial locations, we allow agents to directly access
the relevant information needed in each environmental context. The extensions
to our approach for multi-agent environments allow for the definition of spatially
distributed normative objects and the means to distribute and handle such objects
in a shared environment.

1 Introduction

The environment is an important part of Multi-Agent Systems (MAS) [18], even more
so for systems of situated agents. Multi-agent systems are usually designed as a set of
agents, the environment where they interact, social structures, and the possible interac-
tions among these components.

In previous work, we presented a language that allows MAS designers to describe,
at high level, environments for situated multi-agent systems [12,1]. The language is
called ELMS, and was created to be part of a platform for the development of (social)
simulations based on multi-agent systems. In this paper, we present extensions that
complement the environment description with structures which, by allowing the distri-
bution of normative information over the environment, give support to connecting the
environment and organisational structures.

D. Weyns, H.V.D. Parunak, and F. Michel (Eds.): E4MAS 2006, LNAI 4389, pp. 203–220, 2007.
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In particular, we present here a set of concepts for a spatially distributed infras-
tructure formed by normative objects, normative places, and norm supervisors. This
infrastructure in our view facilitates the modelling and simulation of various real-world
situation, which might be useful for testing approaches to achieve improved coordina-
tion in large-scale multi-agent systems. The notions of normative objects and normative
places were originally introduced in [11], and we here build upon those initial ideas.

To understand the notion of normative object, consider the posters one typically sees
in public places such as libraries or bars saying “Please be quiet” or “No smoking
in this area”. Human societies often resort to this mechanism for decentralising the
burden of regulating social behaviour; people then adopt such norms whenever they
have visual access to such posters. This should be equally efficient for computational
systems because it avoids the need for having all the norms hard-wired in the agents
or the need to providing a complete, exhaustive representation of all social norms in a
single public structure, known to all agents, as it is usually the case in approaches to
agent organisations.

Normative places are zones where normative objects are applicable. As an example,
consider a research group whose researcher agents do their research both in a laboratory
and in a library. In the laboratory, the interactions among researchers, staff, and with the
environment are specific to the spatial scene of the laboratory space. The information
about how to behave in a library is defined specifically for the library spatial location,
where the researchers will also assume the role of library users. Normative information
relevant for each such site (and each place at each site) can be posted to the agents with
the help of normative objects. The norm supervisor agents are a special class of agents
that monitor the agents’ compliance to norms within the MAS. The norm supervisor
agents may be system agents1 specifically designed for such function or autonomous
agents with such functionality enabled.

In summary, the extensions we introduce here support situated norms and leaves the
necessary room for the inclusion of group structures that are spatially situated within a
(simulated) physical environment. This is done using two means: first, normative ob-
jects, which are objects that can contain normative information; and second, a normative
principle for situated norms, conceived as a special form of conditional rule, where an
explicit condition on an agent’s perception of a normative object appears: ‘When play-
ing the relevant role and being physically situated within the confines referred to by
a situated norm N expressed in a normative object previously perceived, the agent is
expected to reason about following norm N ; otherwise, it is excused from reasoning
about it’. Also, normative objects may be directed towards a specific role in a given
organisation. We can therefore model things such as a sign saying that students are not
allowed beyond the library desk, while members of staff have permission to go through.

In the next section, we briefly present our platform and the various component lan-
guages we use to model multi-agent systems. In Section 3, we briefly review how an
environment should be modelled using our approach. In Section 4, we present the
normative extensions which are the main focus of this paper. We then illustrate our

1 By “system agents” we mean agents that are part of the internal controlling structures put in
place by the system designer.
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approach with an example in Section 6; the example is based on the scenario presented
in [3]. We discuss related work in Section 7, then conclude the paper.

2 The MAS-SOC Platform

One of the main goals of the MAS-SOC simulation platform (Multi-Agent Simulations
for the SOCial Sciences) is to provide a framework for the creation of agent-based
simulations which do not require too much experience in programming from users, yet
allowing the use of state-of-the-art agent technologies. In particular, it should allow for
the design and implementation of simulations with cognitive agents.

In our approach, an agent’s individual reasoning is specified in an extended version
of AgentSpeak [14], as interpreted by Jason [2], an Open Source agent platform based
on Java (available at http://jason.sf.net). The extensions allow, among other
things, for speech-act based agent communication, and there is ongoing work to allow
for ontologies as part of an AgentSpeak agent’s belief base.

The environments where agents are situated are specified in ELMS, a language we
have designed for the description of multi-agent environments [12]. For more details
on MAS-SOC, refer to [1]. We here concentrate on the ELMS extensions to describe
social norms that apply to specific places within an environment, and to relate an organ-
isational structure and the relevant normative aspects to the spatial structures defined
within the physical environment.

3 Modelling Physical Environments

As presented in [12], we developed a language to describe environments and the means
to execute the simulated environment. Agents in a multi-agent system interact with the
environment where they are situated and interact with each other, typically through
the shared environment. Therefore, the environment has an important role in a multi-
agent system, whether the environment is the Internet, the real world, or some simulated
environment.

We understand as environment modelling, the modelling of external aspects that an
agent needs as input to its reasoning and for deciding on its course of action. In a multi-
agent scenario, how one agent perceives another is an important issue. Thus, modelling
explicitly the agent’s “body” should also be included in environment modelling. Fur-
ther, it is necessary to model explicitly the physical actions and perception capabilities
that the agents are allowed to perform in a given environment.

The language we designed for modelling environments is called ELMS
(Environment Description Language for Multi-Agent Simulation). Below we briefly
review how a physical environment is described using this language.

To define an environment using ELMS, the following classes of constructs are used:

Agent Body: the agent’s characteristics that are perceptible to other agents. Agent
“bodies” are defined by a set of properties that characterise it and are perceptible to
other agents. Such properties are represented as string, integer, float, and boolean
values. Each “body” is associated with a set of actions that the agent is allowed to
perform and of environment properties that the agent can perceive.
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Agent Sensorial Capabilities (Perceptions): each sensorial capability is used to spec-
ify which environment properties will be perceptible to each agent that have a
“body” with such capacity. It determines the environmental properties that will
be sent to the agent and the specific circumstances where they are possible (e.g. an
agent may be able to see in a radius of 2 cells, but only if there is nothing obstructing
its vision).

Agent Effective Capacities (Actions): each effective capacity determines the envi-
ronment changes that can be effected by an agent that has a “body” with such
capacities. These changes are defined as assignments of values to the attributes of
environments2. The production (instantiation) of previously defined resources (ob-
jects), and the consumption (deletion) of existing instances may also be part of an
action description. Also, the conditions under which an action can be performed
should be specified.

Physical Environment Objects and Resources: the objects and resources that are
present in the environment. Although objects and resources can be conceptually
different, both are represented by the same structure in ELMS. Agents interact with
objects through the actions performed in the environment. Object structures are de-
fined by a set of properties that are relevant to the modelling and could be perceived
by agents. In the same way as the “bodies” of agents, the properties of resources
are represented by string, integer, float, and boolean values.

Object Reactions: the objects can “react”, under specific circumstances, responding
to actions performed by the agents in the environment. Such reactions are given
as the assignment of values to properties, the creation of previously defined object
instances, and the deletion of existing object instances.

Space Structure (Grid): the space is (optionally) divided into cells forming a grid that
represents the spatial structure of the environment. When a grid is used, it can be
defined in 2 or 3 dimensions. As for resources, each cell can have reactions asso-
ciated with them. Although the specified set of reactions apply to all of the cells,
this does not mean that all cells will behave equally, since they may be in different
states (i.e., each cell has independent attributes, thus having different contents and,
clearly, different positions, which can all affect the particular reactions).

3.1 Notes on Environment Descriptions

Perceptions: agents do not normally have complete access to the environment. Percep-
tion of the environment will not normally give complete and accurate information
about the whole environment and the other agents in it. However, since such re-
striction is not imposed by the ELMS model itself, designers can choose to create
fully accessible environments if this is appropriate for a particular application.

Actions: it helps maintaining the coherence of the environment if agent actions are de-
fined so as to be “atomic”. As the choice of (courses of) action is meant to be part of
the agent’s mind, something that is more naturally seen as a whole series of actions
should not be implemented as one action available to agents at the environment
level.

2 Note that properties of agent bodies are also properties of the environment.
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Reactions: all object reactions triggered by some change in the environment are ex-
ecuted in a single simulation cycle. This is different from agent actions, as each
agent can execute only one action per cycle.

Additionally to the constructs mentioned above, the following operational constructs
are used in our approach to model the simulated physical environment.

Constructors: Each agent and resource may need to be initialised at the moment of its
instantiation. This is defined by a list of initial value assignment to its attributes.

Observables: A list of environment properties whose values are to be displayed/
logged; these are the specific properties of a simulation that the user wants to ob-
serve/analyse.

The simulation of the environment itself is done by a process that controls the access
and changes made to the data structure that represents the environment (in fact, only
that process can access the data structure); the process is called the environment con-
troller. The data structure that represents the environment is generated by the ELMS
interpreter for a specification in ELMS given as input. In each simulation cycle, the
environment controller sends to all agents currently taking part in the simulation the
percepts to which they have access (as specified in ELMS). Recall that ELMS environ-
ments are designed for cognitive agents, so perception is transmitted to the agents’ prac-
tical reasoning (which in MAS-SOC typically run under Jason as separate processes)
in messages as a list of ground logical facts. After sending perception, the controller
process waits for the actions that the agents have chosen to perform in that simula-
tion cycle and then execute the action in the environment, which means to perform the
changes, as specified in the ELMS actions, in the environment data structures. Finally,
the environment sends the updated perceptions to the agents, starting a new cycle.

4 Normative Infrastructure

Typically, environments will have some objects aimed at informing agents about norms,
give some advice, or warn about potential dangers. For example, a poster fixed on a wall
in a library asking for “silence” is an object in the environment, but also informs about
a norm that should be respected within that space. Another example are traffic signs,
which give advice about directions or regulate priorities in crossings. The existence of
such signs, which we call normative objects, implies the existence of a regulating code
in such context, and such code is formed by what we call situated norms.

In the examples above, the norms are only meant to be followed within certain
boundaries of space or time, and lose their effect completely if those space and time
restrictions are not met, which is the initial motivation for situated norms. Another im-
portant advantage of modelling some norms as situated norms is the fact that the spatial
context where the norm is to be followed is immediately determined. Thus, the norm can
be “pre-compiled” to its situated form, making it easier for the agents to operationalise
the norm, and also facilitating the verification of norm compliance.

In this section we present the extensions to ELMS that are meant to provide an infras-
tructure allowing the distribution of normative information within an environment. Such
infrastructure is aimed at being a connection point between the environment and organ-
isational structures, improving significantly the possibilities of our simulation platform.
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4.1 Normative Places

As described in previous sections, we have developed a language to describe environ-
ments for situated multi-agent systems. The description, based on the concepts of agent
bodies, objects, and an optional grid, did not offer the means to define the notion of a
“place”, i.e., a set of cells where a set of connected activities are done or where groups
or agent settings are related; we refer to them as normative places. They are effectively
used to represent the physical spaces where organisations take place; that is, a norma-
tive place is the spatial scope of a particular organisation, and consequently the norms
related to the activities of such organisation.

A normative place is defined simply by its name and the set of cells that are part of
it. A normative place may have intersection with other normative places, or may even
be contained by another. For example a “school” may be seen as a normative place with
a large set of cells where some cells refer to a normative place “classroom” and others
to the “library”. The normative place definition allows for the definition of the spatial
location where certain norms are valid and relevant, as it will be seen in the next section.

In order to ease the definition of repetitive normative place structures, types of nor-
mative places can be defined and then instantiated in specific positions of the grid.
Examples of such definitions (in ELMS’s XML format) are as follows.

<NORMATIVE-PLACE-TYPE NAME="library"/>

<NORMATIVE-PLACE-TYPE NAME="classroom"/>

<PLACE NAME="lib1" NORMATIVE-PLACE-TYPE="library">
<CELL X="0" Y="0"/>
<CELL X="0" Y="1"/>

</PLACE>

<PLACE NAME="cr1" NORMATIVE-PLACE-TYPE="classroom">
<CELL X="2" Y="0">

</PLACE>

4.2 Normative Objects

Normative objects are “readable” by agents under specific individual conditions; that is,
an agent can read a specific rule if it has a specific ability to perceive that type of object.
In the most typical case, the condition is simply being physically close to the object.

Such objects can be defined before the simulation starts, or can be created dynami-
cally during the simulation. Each normative object can be placed in a collection of cells
of the spatial grid of the environment. Such cells represent the normative place, de-
termining the first condition for the normative object being perceived: it is only in that
normative place that the content of the normative object can be accessed and is relevant.
If such collection of cells is not given, the normative object will only be perceived by
agents under specific conditions. The conditions under which the normative objects can
be perceived are defined by the simulation designer using the usual ELMS constructs
for defining conditions.

The normative information in a normative object is read by an agent through its
sensing/perception abilities. It contains the norm itself and also meta-information (e.g.,
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which agent or institution created the norm). Normative objects can be defined before
the simulation starts in a “norms definition file” or during the simulation, in both cases
by the definition of the following properties:

Type: the type of the normative information contained in the object; it determines the
level of importance (e.g. a warning, an obligation, a direction);

Issued by: where the power underlying the norm comes from (e.g., an agent, a group,
an institution).

Norm: a string that represents the normative information; this should be in the for-
mat of AgentSpeak predicates in the case of MAS-SOC environments, or whatever
format the targeted agents will be able to understand.

Placement: the set of normative spaces where the normative information applies. If
omitted, the object is assumed to be accessible from anywhere, but normally under
conditions determined by the designer (see the next item). This also determines the
space where the normative information applies.

Condition: conditions under which the normative information can be perceived. The
conditions can be associated with groups, roles, abilities, and current physical
placement and orientation of agents and objects.

Id: identification string for eventual deletion/edition of the normative object.

We now briefly describe how the agents will receive normative information from
normative objects. Whenever the agent position is such that access to the normative
object is granted, and the Condition is satisfied, the agent will receive percepts of the
form:

rule([PLACE],[GROUP],[ISSUED BY],[NORM])
For example: rule(home, family, parents, obligation(child,play(TOY),tidy(TOY)))

The example above can be read as: “This is a rule to be followed by members of the
family group, issued by the parents, with application at the normative place home (see
below), that says: if the action play(TOY ) is done by an agent of role child, then it
is an obligation of that agent to do tidy(TOY ) as well”. A rule like that would not
normally be posted on a sign in a family home, but it illustrates the more general idea
of situated norms as norms that apply within given environmental locations.

It is worth noting that the norm-abiding behaviour is not related just to the existence of
a normative object at some place. Beyond the existence of such object, it is necessary for
the agent to perceive the normative object, and autonomous agents will also reason about
whether to follow or not the norm stated by the normative object, after perceiving it.

4.3 Pre-compilation of Norms

The normative objects are not meant to be only means to spread general norms. The
norms informed through the normative objects are supposed to be contextualised (as
determined by the simulation designer), incorporating information which is specific to
the normative place where it is relevant.

Since the spatial context of the norm is limited and determined by the normative
places, a generic norm can then be “pre-compiled” with such information, so that it
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becomes less abstract. This process is meant to make it easier to operationalise the norm,
since the norm is “ready to use” and it is in the spatial context where it is relevant. Other
advantages of having less abstract norms are that the verification of norm compliance
is facilitated and that they can reduce the misinterpretations that could happen with
abstract, non-contextualised norms.

For example a norm that says “Be kind to the elderly”, may be quite hard to oper-
ationalise and verify, in general. However, in a fixed spatial context such as a bus or
train, with the norm contextualised as “Give up your seat for the elderly”, or in a street
crossing, with the norm contextualised as “Help elderly people to cross the street”, the
norm would be much more easily interpreted by the agents, and similarly much more
easily verified by any norm compliance checking mechanism.

4.4 Norm Supervisors

Since the agents are free to reason about abiding or not to a norm stated in a normative
object, besides having in general limited perception capabilities with respect to norma-
tive objects, there is also a need to monitor the behaviour of those agents. In order to
be able to act as a norm supervisor, an agent may need extra information and perhaps
extra abilities. For this reason, in the extended version of ELMS, it is possible to define
an agent as a norm supervisor, which will enable it to receive information about the
relevant normative information as well as about the actions being done by other agents
at a given normative place.

The agents in charge of norm supervision may be system agents, designed to check
agents’ compliance to norms or may be common agents whose interests require that cer-
tain agents follow certain norms. As the norm and the possible violations are contextu-
alised in a specific normative place, it is much easier to define the possible violations of
those norms. Through the use of simple rules, a norm supervisor can check the compliance
of agents to norms, and then according to the capabilities given to it, it may interrupt the
course of action of another agent, issue penalties or appropriate “punishment”, or simply
report the breaching of the norm to some centralised agency or the user.

It is important to note that norm supervisors are not meant only to try and stop rule
breaking by other agents. Norm supervisors are agents that have access to extra informa-
tion in order to be able to check the compliance to norms. The simulation designer may
enable such capacity in a agent just to help it achieving its goal, to use such information
to monitor the simulation, or as an input to a reputation system, among other things.

For instance, according to [5], an agent may be motivated to verify the compliance to
norms by other agents in order to assure that the costs of norm adherence is being paid
by the other agents too. A norm abiding agent will want that all the others addressees
of the norms follow it too, otherwise the norm adhering behaviour may become some
sort of competitive disadvantage. In [5], the authors refer to agents with such behaviour
as norm defenders.

4.5 Environment-Agent Cycle

In this section, we present, in general terms, how the environment is simulated. Figure 1
shows some activity states for the environment simulation on the left-hand side, a
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Fig. 1. Environment-Agent Cycle

simplified model of an agent’s activity states on the right-hand side, and the main com-
munication between them at the centre. The environment states are described bellow:

1. For each agent, the environment simulation controller process checks the class of
the agent and which perception levels are enabled for it. Then, it checks which per-
ception levels fulfil the conditions specified in the ELMS perception specification
and gathers the appropriate environment properties to be sent to the agent.

2. The normative objects that are in the same normative place as the agent are checked
in order to decide if they contain normative information relevant to the agent. If the
conditions are fulfilled the norms are also gathered to be sent to the agent.

3. The environment sends the specific percepts and normative information to each
agent.

4. The environment waits for the action selected by each agent.
5. The environment checks if the selected action is enabled for the agent that requested

it and whether it fulfils the conditions specified on the ELMS action definition. If
so, environment properties are changed as specified in the action definition.

6. The environment checks which reactions of the objects were triggered by the cur-
rent state of environment properties. The triggered reactions are executed, changing
the environment state. Then the cycle starts over again, going back to Step 1.

A general outline of a protocol that agents should follow is described bellow:

A. The agent waits until it receives percepts and normative information from the
environment.
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B. The agent could then compare the perceptions received with its own world repre-
sentation in order to detect changes which may be relevant for its choice of action.

C. The agent will select an action to execute, based on its own goals and the perceived
norms. Such decision involves a balance between a wide range of factors, of which
we mention just a few:

– beliefs about the environment;
– goals, i.e., states-of-world that the agent wants to bring about;
– selection of which goal to achieve;
– selection of which norms to follow or not;
– solve conflicts between goals and norms;

D. The agent sends the selected action to the environment simulation.

If the agent is a norm supervisor, the main difference is that it will be enabled to
receive normative information that may or may not be relevant for itself and extra infor-
mation about the behaviour of other agents. Using such information the norm supervisor
agent may verify the compliance to norms. Then, in case of non-compliance, the norm
supervisor may reason about the breaching of norms and take an action according to
the capacities made available to it by the system designer, which may include the power
to interrupt a course of action, issue penalties/sanctions/punishments, report the norm
breach, or simply keep a record of the episode.

5 Modelling Environments Using ELMS

As the MAS-SOC platform does not enforce a particular agent-oriented software engi-
neering methodology, designers can use the one they prefer. It is possible to model a
multi-agent system that will have an ELMS environment using any approach: starting
from the system organisation (top-down), or starting from the agents and their interac-
tions (bottom-up).

In both approaches, the modelling of the organisational structures and the agents’
reasoning need fine tuning to achieve the desired results. To have a stable point on
which to base the fine tuning of the agents’ reasoning or the organisational model, we
suggest the use of an explicitly defined environment description written in the ELMS
language and the notions presented in the Section 3. The environment is an important
part of a multi-agent system, and although it can be very dynamic, in regards to design
it is usually the most “stable” part of the system.

Even when the environment of the multi-agent system is the “real world” and the
agent is a robot with sensors and effectors, the environment model should play a signif-
icant role in the design of the system. Any robot should have a set of sensors that give
a predefined set of percepts that the robot will acquire when sensing the environment.
Also, it should have a set of effectors that allow a restricted set of (parameterisable)
actions. Thus, the possible sensor inputs and effectors output should be modelled first
to facilitate the development of the software for the robot.

Based on these observations, we suggest that the multi-agent system design should
start with the environment definition, followed by the definition of the normative places.
The environment modelling should proceed as follows:
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1. Definition of which kinds of action each type of agent is able to perform in the
environment. Actions typically produce effects on objects of the environment or
other agents.

2. Based on the changes that the agents’ effective capabilities are able to make in the
environment and the objectives of the simulation, the size and granularity of the
grid can be determined. For example, how many cells an agent can move within
one action or simulation cycle, and in how many simulation cycles the agent would
be able to traverse the simulated space.

3. Based on the granularity and size of the spatial environment, the sensorial capa-
bilities of the agents can be modelled, determining for example in which range an
agent can detect other agents and objects.

4. Based on an agent’s sensorial capabilities and on its typical activities, it should be
possible to define which attributes of that agent is important to declare as accessible
to other agents. For example, if agents identify each other’s role by the colour of
their uniform, the “agent body” should have an attribute that represent the colour
of the agent’s uniform.

5. The types of objects or resources present in the environment should also be mod-
elled based on which attributes will be perceptible by the agents and which actions
can affect them.

6. Finally, instances of the agent and object classes should be placed in the environ-
ment, determining its initial state.

The definition of the environment should be followed by the definition of normative
places, followed then by the definition of the spatially distributed normative objects, as
follows:

1. As the resource and agent instances are placed in the environment, the activities for
each spatial place can be defined.

2. By grouping the neighbouring cells where similar activities are done, the normative
places and its extensions can be defined.

3. By instantiating normative places into sets of cells, the normative places are cre-
ated.

4. Then, based on the set of activities that can possibly be performed in each type of
normative place, the norms that are relevant to that type of place can be defined.

5. Finally, the types of normative objects can be defined and instantiated in the nor-
mative places, defining the locations where situated norms can be perceived.

Using the environment as the basis, i.e., using the information contained in the en-
vironment model, the agents’ reasoning capabilities can then be defined so as to help
agents achieve their goals as well as those of the groups to which they belong. Also, the
detailed definitions of possible organisational structures can be fine tuned, in order to
allow the overall system to achieve its (social) goals. In MAS-SOC, we use AgentSpeak
to define the practical reasoning for each agent; in particular, we use the extended ver-
sion of AgentSpeak as interpreted by Jason; for details, see [2].
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6 Example

Below we give an example showing how normative objects are defined using our ap-
proach. It is based on the scenario presented in [3], a scenario in which the agents are
placed in an environment where they can eat the food they find, attack another agent to
take its food, or move in search of food.

In this scenario, an agent owns any (free) food item that is near to itself (at a distance
of up to 2 cells). The agents can “see” food and other agents in a radius of 1 cell, but can
sense food in a radius of 2 cells. The physical space is represented by a grid of 10× 10
cells.

The norms used in that scenario essentially concern the respect for the ownership
of a food item, which means they prescribe non-aggressive behaviour. In the original
scenario, the norms were valid throughout the grid (that is, the whole environment was
treated as just one single normative place), but in the following example we use norma-
tive objects and establish smaller normative places within the environment.

A shortened version of the physical environment description is given below. The
actual environment description of environments in ELMS is stored in XML format (with
the help of a GUI), but in order to save space and improve readability, we have adopted
a pseudocode representation, just to show the main points of the environment model in
ELMS.

environment.name:="FOOD-CHASERS";
environment.grid.dim(10,10);

food = Resource{
owner: string ("none")
id: integer}

agent = Agent_body{
id: integer(SELF);
power: integer(50);
vision: PERCEPTION;
sense_food: PERCEPTION;
walk: ACTION;
attack: ACTION;
eat: ACTION;
SUPERVISION:=ENABLED;
ENFORCING:=NONE;

}

vision = PERCEPTION{
cell[+0][+0].contents; cell[+0][+1].food.owner;
cell[+0][-1].contents; cell[+1][+0].food.owner;
cell[-1][+0].contents;
cell[+0][+0].food.owner; cell[+0][+1].food.owner;
cell[+0][-1].food.owner; cell[+1][+0].food.owner;
cell[-1][+0].food.owner;

}

sense_food = PERCEPTION{
cell[+1][+1].food.id; cell[-1][-1].food.id;
cell[-1][+1].food.id; cell[+1][-1].food.id;
cell[+0][-2].food.id; cell[+0][+2].food.id;
cell[-2][+0].food.id; cell[+2][+0].food.id;

}

eat = ACTION(FOOD_ID:integer){....}
walk = ACTION{....}
attack = ACTION{...}
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In the code excerpt above, the grid size is defined, then food is defined as a generic
type of environment resource, then a generic type of agent body is defined. The agent
body is defined as being capable of two types of perception — vision and food sensing
– and being able to perform three types of actions: walk, attack, and eat. The vision
perception type allows the agent to perceive the contents of the current cell and the
4 neighbouring cells, while sense food allows it to perceive food within a 2-cell
radius. The agent also have the SUPERVISION property enabled, which means that
the agents will perceive normative information contained in its current location which
may not be relevant to itself. Also the agent will be able to receive information about
the actions performed by agents that are in the same normative space. The ENFORCING
parameter hasNONE as value, meaning that the agent has no group or institutional power
to enforce the norms. However, the agent may keep the record of norm breaching for
its future reference; the kept record can also be used for an eventual retaliation or to be
shared with other agents.

For this example, the grid is partitioned in four normative places of equal sizes, and
normative objects are defined and placed in three of the four quadrants, as shown in the
code excerpt below:

upper-left = PLACE{
type = "food-protected"
environment.grid[0..4][0..4];
}

upper-right = PLACE{
type = "food-protected"
environment.grid[5..9][0..4];

}

lower-left = PLACE{
type = "food-protected"
environment.grid[0..4][5..9];
}

norm-obj1 = NORM_OBJ{
type := "prohibition";
place:= "upper-left"
norm := "prohibited(true,attack(SELF,AGENT))";

}

norm-obj2 = NORM_OBJ{
type := "prohibited";
place:= "upper-right"
norm := "prohibited(not(in-possession(SELF,FOOD)),eat(SELF,FOOD))";

}

norm-obj3 = NORM_OBJ{
type := "prohibition";
place:= "lower-left"
norm := "prohibited(true,attack(SELF,AGENT))";

}

norm-obj4 = NORM_OBJ{
type := "prohibited";
place:= "lower-left"
norm := "prohibited(not(in-possession(SELF,FOOD)),eat(SELF,FOOD))";

}

The normative objects in the above example are very simple, and are given simply
to illustrate how they can be modelled in our approach. For instance, norm-obj1 and
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norm-obj3 say that an agent ought not to attack (steal food from) another agent,
while norm-obj2 and norm-obj4 say that the agent ought not to eat a food item
which is not in possession of the agent itself.

Clearly, the agents’ behaviour will be different in the four quadrants of the
environment:

– in the upper-left quadrant, agents are advised against eating food that is in the pos-
session of another agent, since the situated norm states that agents are prohibited
from stealing food;

– in the upper-right quadrant, agents are apparently prohibited from doing that, but
not effectively, since the situated norm only prohibits the eating of food that is not
currently in the possession of the agent itself (rather than the stealing of food); so,
an agent can eat food that previously was in the possession of another agent if it
first manages to steal the food;

– in the lower-left quadrant, both restrictions are in place; we note that this situation
can be seen as redundant, if one understands that the second norm is implied by the
first one;

– the remaining quadrant (lower-right) is a lawless area, where agents are completely
free to attack each other and to eat anyone else’s food.

Notice that prohibited is used as a conditional deontic operator, with two argu-
ments: the first argument is a condition to be tested, the second argument is the action
that is prohibited. In the modelled scenario, agents are not forced to follow the rules,
but they may use the normative information to monitor each other, being able to use it,
for example, as input to a reputation system.

7 Related Work

The notion of artifacts [17] and coordination artifacts [13] resembles, in some aspects,
our notion of normative objects. As defined in [13], coordination artifacts are abstrac-
tions meant to improve the automation of coordination activities, being the building
blocks to create effective shared collaborative working environments. They are de-
fined as runtime abstractions that encapsulate and provide a coordination service to the
agents. Artifacts [17] were presented as a generalisation of coordination artifacts. Arti-
facts are an abstraction to represent tools, services, objects, and entities in a multi-agent
environment.

As building blocks for environment modelling, artifacts encapsulate the features of
the environment as services to be used by the agents. The main objective of a coordi-
nation artifacts is to be used as an abstraction of an environmental coordination service
provided to the agents. However, coordination artifacts express normative rules only
implicitly, through their practical effects on the actions of the agents, and so their nor-
mative impact does not require any normative reasoning from the part of the agents. In
our work, rather than having a general notion of objects that by their (physical) prop-
erties facilitate coordination, normative objects are used specifically to store symbolic
information that can be interpreted by agents, so that they can become aware of norms
that should be followed within a well-defined location.
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Our choice in regards to normative objects has the advantage of keeping open the
possibility of agent autonomy, as suggested in [4]. Agents are, in principle, able to
decide whether to follow the norms or not when trying to be effective in the pursuit of
their goals. This is something that is not possible if an agent’s action can only happen
if it is in accordance implicit norms enforced by coordination mechanisms.

Another important difference is that normative objects are spatially distributed over
a physical environment, with a spatial scope where they apply, and closely tied to the
part of the organisation that is physically located in that space. While the objective of
the notion of coordination artifacts is to remove the burden of coordination from the
agents, our work tries to simplify the way designers can guide the behaviour of each
individual agent as they move around an environment where organisations are spatially
located; this allows agents to adapt the way they behave in different social contexts.

In [8], the authors present the AGRE model, an extension to the previous AGR
model. Those latest extensions allow the definition of structures that represents the
physical space. The approach defines organisational structures (i.e., groups) and the
physical structures (i.e., areas) as “specialisations” of a generic space. We find, how-
ever, that in their approach, the social structures are not contextualised in the space as
they are in our work, leaving the social and physical structures rather unrelated.

In ELMS, however, it is not possible to explicitly define social structures, even
though it would be possible to implicitly define them through the norms. This is because
our aim in the present ELMS extension is to allow for environmental infrastructures to
be compatible with existing approaches to organisational modelling, not for the mod-
elling of organisations as such; the combination of ELMS with existing approaches to
modelling organisations is the first item in our current research agenda.

Another important series of related work is that on Electronic Institutions [9]. The
internal working of an electronic institutions is given (in rough terms) as a state-machine
where each state is called a “scene”. Each scene specifies the set of roles that agents
may perform in it, and a “conversation protocol” that the agents should follow when
interacting in the scene. To traverse the series of scenes that constitute the operation of
the electronic institution, agents must do a sequence of actions in each scene, and also
to commit to certain actions in certain scenes, as the result of their having performed
certain other actions in certain other scenes. Our notion of normative space was inspired
by such notion of scene, in giving it a physical, spatial reference where norms apply.

Similar to the electronic institutions approach, there is work on computational insti-
tutions [15], which are defined as virtual organisations ruled by constitutive norms and
regulative norms. In computational institutions, organisational modelling uses the ab-
straction of coordination artifacts as building blocks, in a way that is very similar to our
use of normative objects in spatially distributed organisations, but still keeping implicit
in coordination artifacts the normative content imposed on the agents.

8 Conclusions

In this paper, we extended the ELMS language for describing environments with the
means to define normative structures that make part of an environment representa-
tion. There are currently various approaches to designing and implementing multi-agent
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systems: some are top-down approaches with focus on the organisations, while bottom-
up approaches focus on the agents. We believe that including environment modelling at
the initial stages of both approaches would help the modelling and implementation of
multi-agent systems. To help such modelling, we have proposed an approach with an
explicit environment description which now also includes the notions of situated norms,
normative places, and (spatially distributed) normative objects.

It is important to note that our work is not an approach for modelling the organ-
isational dimension of a multi-agent system. With the definition of normative places,
where group structures would be situated, we intend to fill a conceptual gap between the
usual ways in which organisations and physical environments are modelled. In future
work, with the integration of existing approaches to defining organisational structures
into ELMS, and thus the possibility of associating them to normative places, we hope
to contribute to a more integrated approach to designing and implementing the various
aspects of multi-agent systems: concentrating on one particular organisation section at
a time, specially if it is an organisation section attached to a spatial location, make it
easier for designers to define the groups, roles and agent behaviour that should operate
in that particular organisation section.

We believe that an explicit environment description is an important part of a multi-
agent system because it is a stable point from where the agent reasoning and the organ-
isational structures can be fine-tuned so as to facilitate the development of agents and
organisations that can achieve their goals. We believe that the notion of spatially dis-
tributed normative objects that we have introduced in our work is a suitable approach
to connecting definitions of organisations and definitions of environments. Addition-
ally, distributing the organisational/normative information can facilitate the modelling
of large organisations.

We plan to make possible such association for existing approaches to modelling
agent organisations, such as MOISE+ [10], OperA/OMNI [16], GAIA [19], and ap-
proaches based on electronic institutions [6,7]. However, the recursive nature of nor-
mative places may not be compatible with some of such approaches to organisations,
where the (possibly implicit) system of normative rules has no provision for a recursive
structure in its operation.

By distributing the normative information in the environment, it is possible to parti-
tion the environment in a functional way, thus helping the structured definition of large
simulations, norms being associated only with the places where they are meant to be
followed. It is also more efficient (by taking advantage of the natural distribution of
certain environments) to have norms spread in an environment than having them in
a centralised repository made available to the whole society, as it is usually the case.
Another advantage of having the information distributed is the possibility of the pre-
compilation of the norms with the spatial context information, which we call situated
norms. This makes it much easier to make norms operational, both for following norms
and checking norm compliance. Using the resulting information of the norm compli-
ance checking as input, e.g., for a reputation system, given that different places can have
different norms, it may turn out that, despite exhibiting exactly the same behaviour at
different places, an agent will have different reputations at different places, leading to
the notion of locality of reputation; this is another interesting subject for future work.
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It is interesting to note that, being conditioned on the possibility of checking the
existence of a normative object, the normative reasoning required from agents that deal
with normative objects is necessarily of a non-monotonic nature; the experience of pro-
gramming such reasoning in AgentSpeak is something we also plan to do in the future.
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Abstract. Environment is an essential part of any multi-agent system (MAS), 
since it provides the surrounding conditions for agents to exist. For some sort of 
systems, the environment can be viewed as providing a set of services, in which 
some of them, such as directory facilities, are used explicitly by the agents to 
perform their tasks, and other such as monitoring, behavioral enforcement and 
security can be done transparently by the environment. We join the idea that the 
specification of environments of open multi-agent systems should include laws 
that define what and when something can happen in an open system. Laws are 
restrictions imposed by the environment to tame uncertainty and to promote 
open system dependability. This paper proposes a design approach and 
application of a middleware based on laws in multi-agent systems. The 
approach can be viewed as a set of services provided by the environment. 

1   Introduction 

The agent development paradigm has posed many challenges to software engineering 
researchers. This is particularly true when the systems are distributed and inherently 
open to accept new modules that may have been independently developed by third 
parties. Such systems are characterized by having little or no control over the actions 
that agents can perform. The greater the dependence of our society on open 
distributed applications, the greater will be the demand for dependable applications. 

Environment is an essential part of any multi-agent system (MAS), since it 
provides the surrounding conditions for agents to exist [25]. Several aspects of MAS 
that are vital for agents do not belong to agents themselves but are part of the 
environment [5]. We believe that the specification of environments of open  
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multi-agent systems (MAS) should include laws that define what and when something 
can happen in an open system [4][5]. Laws are restrictions imposed by the 
environment to tame uncertainty and to promote open system dependability [15][17]. 
In this sense, the environment performs an active role monitoring and verifying if 
behavior of agents are in conformance with the laws. This kind of environment is 
composed of a governance mechanism, which is the mediator that enforces the law 
specification. Examples of governance mechanisms are LGI [15], Islander [7] and 
MLaw [18]. 

Governance for open multi-agent systems can be defined as the set of approaches 
that aims to establish and enforce some structure, set of norms or conventions to 
articulate or restrain interactions in order to make agents more effective in attaining 
their goals or more predictable [14]. 

Despite the growing interest in the area, mature governance approaches will only 
be achieved through the use of Software Engineering techniques and tools that 
support the development of more predictable and better quality software systems. 
There has been advance in this area through well founded engineering tools for 
governed interaction such as the work of LGI [15], Islander [7] and Rubino [21]. This 
paper deals with the above mentioned problem through a design approach and 
application of a middleware for governance in multi-agent systems. Notably, we 
propose the modeling of laws for governance, based on XML. This includes norms 
but also other abstractions such as protocols, scenes, constraints and clocks, in order 
to achieve a good expressivity. In another paper, we also addressed the issue of 
specialization of governance specifications using abstractions for extension [4]. The 
middleware can be used in conjunction with a specific agent platform (such as JADE 
[2]), and it permits configuration of interaction rules, monitoring of agent interaction 
and verification of the conformity between the interaction specification and the actual 
interaction. We have already used the middleware in a variety of different situations, 
such as monitoring criticality of agents [11], tests [20] and mediation of inter-bank 
operations. 

This paper is organized as follows. Section 2 introduces the relationship between 
the environment and the interaction Laws. Section 3 introduces the main Governance 
concepts used in this paper. Section 4 presents the middleware for governance used in 
this work. Section 5 shows how the framework can be effectively used to enhance the 
notion of environment and presents an experiment that was performed using the 
middleware. Section 6 presents some related work and details on where this paper 
gives the contribution. Finally, Section 7 presents some discussion and conclusions 
about this work. 

2   Environment and Interaction Laws 

The precise definition of environment is still under the core of the discussions among 
the research community [26]. One of the reasons that definitions of environment have 
proliferated is that MAS have been applied to a wide range of different application 
domains [24]. For example, it is natural for designers of a business-to-business 
application to associate the environment with the existent infrastructure of hardware 
and software on which the agents will have to execute. In another domain, such as an 
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agent-based simulation of an ecosystem, the environment as well as the agents will be 
custom built for the application [24]. 

A very common distinction for environments is between physical and virtual 
environment. In the physical environment there are the physical constraints of the 
existent entities. An example is that in an agent system that controls robots in which 
two robots are not allowed to occupy the same place at the same time. The virtual 
environment provides the principles and processes that govern and support the 
exchange of ideas, knowledge and information [24]. 

A very deep discussion on environments can be found in [26]. They define an 
environment as a first-class abstraction that provides the surrounding conditions for 
agents to exist and that mediates both the interaction among agents and the access to 
resources. 

An environment provides the conditions under which an entity exists [16]. Multi-
agent environments are typically open and have no single centralized designer, they 
contain agents that are autonomous, distributed and may be self-interested or 
cooperative. Furthermore, environments provide a computational infrastructure that 
enables agents to communicate with one another [13]. 

It is the responsibility of the environment to define the rules for, and enforce the 
effects of, the agents’ actions. An appealing way to exert the necessary level of 
control over an agent in an open system is through an adequate MAS infrastructure 
[23], which can be viewed as part of the environment. The type of services provided 
by the infra-structure, and the way in which these services are enacted, limit the set of 
possible actions [23]. For that, a MAS designer can use a governing infrastructure to 
structure and shape the space of action within MAS in an open environment. This 
governing perspective allows managing agent interactions form an external and global 
point-of-view. 

In this sense, the environment is viewed as an active entity that also contains the 
set of behavioral (social) laws, which is constantly monitoring and reacting to agents’ 
actions. It is very important for the agents to be able to perceive the environment. 
Agents can use the percepts to update their knowledge about the environment or use it 
for decision making [24]. In this sense, a virtual environment should provide explicit 
data structures for notify changing on the environment state. 

We have used the reference model of the environment (Figure 1) proposed in [26] 
to show how the environment can be viewed. It shows that the environment provides 
a set of services, in which some of them, such as directory facilities, are used 
explicitly by the agents to perform their tasks, and other such as monitoring, 
behavioral enforcement and security can be done transparently by the environment1. 
The list of services shown in Figure 1 shows an environment as the basic 
infrastructure for supporting agents’ activities in a more dependable manner. In this 
paper we focus on the governance services (the law box in the figure), which are used 
to monitor and enforce the behavior of agents. 

 

                                                           
1 In fact, it may be discussed if social laws (regulating interactions between agents) and social 

entities (like organizations) are, conceptually and architecturally speaking, part of the 
environment of a MAS or if they have a distinct existence (see, e.g., [9]). In this paper, we 
describe governance (of social laws) as part of the services offered by a MAS environment. 
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Fig. 1. Reference model of environments [26] 

3   Governing Interactions 

Law-governed architectures are designed to guarantee that the specifications of open 
systems will be obeyed. The core of a law-governed approach is the mechanism used 
by the mediators to monitor the conversations between components. We have 
developed a software support [18] that, whenever necessary, permits extending this 
mechanism to fulfill open system requirements or interoperability concerns. In this 
architecture, a communication component is provided to agent developers. 

M-Law works by intercepting messages exchanged between agents, verifying the 
compliance of the messages with the laws and subsequently redirecting the message 
to the real addressee, if the laws allow it. If the message is not compliant, then the 
mediator blocks the message and applies the consequences specified in the law 
(Figure 2). This architecture is based on a pool of mediators that intercept messages 
and interpret the previously described laws. A more detailed explanation about how 
this architecture was in fact implemented can be found in [19]. As more clients are 
added to the system, additional mediators’ instances can be added to improve 
throughput. In relation with the list of services shown in Figure 1, M-Law implements 
the monitoring and enforcing of agents’ behavior. 
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Fig. 2. M-Law architecture 

M-Law was built to support law specification using XMLaw [17][3]. XMLaw is 
used to represent the interaction rules of an open system specification. As mentioned 
before, XMLaw is the description language used to configure the M-Law. These rules 
are interpreted by M-Law that analyzes the compliance of software agents with 
interaction laws at runtime. XMLaw represents the structure and the relationships 
between important law elements (Figure 3). A more detailed definition of the 
conceptual model can be found in [3] and [17]. A law is a description composed of 
law elements, such as e.g., protocols, norms, and scenes, as described in the next 
paragraphs. 

Norms can be used to enhance scene and transition definitions; constraints in 
norms and transitions can act as filters of events; and actions can be used as an 
adaptation mechanism to support an active behavior of the environment in an open 
system. We selected some elements from XMLaw conceptual model to illustrate our 
proposal. Below, we will discuss XMLaw structure using the specification of laws for 
the TAC SCM example to facilitate its understanding. 

The conceptual model uses the abstraction of Scenes to help to organize 
interactions. The idea of scenes is similar to theater plays, where actors play 
according to well defined scripts, and the whole play is composed of many scenes 
sequentially connected. Scenes are composed of Protocols, Constraints, Clocks, and 
Norms. It means that these four elements share a common interaction context through 
the scenes. Because protocols define the interaction among the agents, different 
protocols should be specified in different scenes. Scenes also specify which agent role 
has permission to create scene instances. 

Statically, an interaction protocol defines the set of states and transitions (activated 
by messages or any other kind of event) allowed for agents in an open system. Norms 
are jointly used with the protocol specification, constraints, actions and also temporal 
elements, to provide a dynamic configuration for the allowed behavior of components 
in an open system. The mediator keeps information about the set of activated 
elements to verify the compliance of software agents, the set of deactivated elements 
and any other data regarding system execution. 
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Fig. 3. Conceptual model of the elements that can be used to specify laws 

Laws may be time sensitive, e.g., although an element maybe active at time t1, it 
might not be active at time t2 (t1 < t2). XMLaw provides the Clock element to take 
care of the timing aspect. Temporal clocks represent time restrictions or controls and 
they can be used to activate other law elements. Clocks indicate that a certain period 
has elapsed producing clock-tick events. Once activated, a clock can generate clock-
tick events. Clocks are activated and deactivated by law elements. Both are referenced 
to other law elements. Below, we detail the structure of the elements that will be 
exemplified in this paper. 

3.1   Simple Scenario 

The example that will guide our explanation is the Trading Agent Competition - 
Supply Chain Management (TAC SCM). The TAC SCM [22][1][6] editions provide 
some evidence that the interaction specification evolves over time and so an extension 
support can reduce maintenance efforts. 

The TAC SCM has been designed with a simple set of rules to capture the 
complexity of a dynamic supply chain. SCM applications are extremely dynamic and 
involve an important number of products, information and resources among their 
different stages. In our case study, we mapped the requirements of TAC SCM into 
interaction laws and agents are implemented with JADE [2]. 
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Fig. 4. Roles, relationships and cardinalities of TAC SCM 

In TAC SCM, we chose the scenario of negotiation between the suppliers and 
assemblers to explain how interaction laws are used (Figure 1). According to [1], the 
negotiation process involves an assembler agent that buys components from suppliers. 
A bank agent also participates in this negotiation because an assembler must pay the 
components for the supplier. In this scenario, an assembler may send RFQs to each 
supplier every day to order components offered by the supplier. Each RFQ represents 
a request for a specified quantity of a particular component type to be delivered on a 
specific date in the future. The supplier collects all RFQs received during the “day” 
and processes them. On the following “day”, the supplier sends back to each agent an 
offer for each RFQ, containing the price, adjusted quantity, and due date. If the agent 
wishes to accept an offer, it must confirm it by issuing an order to the supplier. 

3.2   Norms 

There are three types of norms in XMLaw: obligations, permissions and prohibitions. 
The obligation norm defines a commitment that software agents acquire while 
interacting with other entities. For instance, the winner of an auction is obligated to 
pay the committed value and this commitment might contain some penalties to avoid 
breaking this rule. The permission norm defines the rights of a software agent at a 
given moment, e.g. the winner of an auction has permission to interact with a bank 
provider through a payment protocol. Finally, the prohibition norm defines forbidden 
actions of a software agent at a given moment; for instance, if an agent does not pay 
its debts, it will not be allowed future participation in a scene. 

In TAC SCM, one permission norm was created about the maximum number of 
requests for quotation that an assembler can submit to a supplier. According to the 
TAC SCM specification, each day each agent may send up to a maximum number of 
RFQs. Besides this permission, the constraint on the acceptable due date of an RFQ 
regulates the same interaction, the request for quote message. 

The structure of the Permission (Code Fragment 1), Obligation and Prohibition 
elements are equal. Each type of norm contains activation and deactivation 
conditions. In the example, an assembler will receive the permission upon logging in 
to the scene (scene activation event) and will lose the permission after issuing an 
order (event orderTransition). Furthermore, norms define the agent role that owns it 
through the attribute Owner. In that case, the assembler agent will receive the 
permission. Norms also have constraints and actions associated with them, but these 
elements will be explained later. Norms also generate activation and deactivation 
events. For instance, as a consequence of the relationship between norms and 
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transitions, it is possible to specify which norms must be made active or deactivated 
for firing a transition. In this sense, a transition could only fire if the sender agent has 
a specific norm. 

<Norm type="permission” id="AssemblerPermissionRFQ"> 
 <Assignee role-ref="assembler" 
           role-instance="$assembler.instance"/> 
  <Activations> 
   <Element ref="negotiation" 
            event-type="scene_creation"/> 
  </Activations> 
  <Deactivations> 
   <Element ref="orderTransition" 
            event-type="transition_activation"/> 
  </Deactivations> 
  <Constraints> 
   <Constraint id="checkCounter" class="CounterLimit"/> 
  </Constraints> 
  <Actions> 
   <Action id="permissionRenew" class="ZeroCounter"> 
    <Element ref="nextDay" event-type="clock_tick"/> 
   </Action> 
   <Action id="orderID" class="RFQCounter"/> 
    <Element ref="rfqTransition" 
             event-type="transition_activation"/> 
   </Action> 
  </Actions> 
</Norm> 

Code 1. Permission structure 

3.3   Constraints 

Constraints are restrictions over norms or transitions and generally specify filters for 
events, constraining the allowed values for a specific attribute of an event. For 
instance, messages carry information that is enforced in various ways. A message 
pattern enforces the message structure fields [17]. A message pattern does not 
describe what the allowed values for specific attributes are, but constraints can be 
used for this purpose. In this way, developers are free to build as complex constraints 
as needed for their applications. 

Constraints are defined inside the Transition (Code Fragment 2) or Norm (Code 
Fragment 1) elements Constraints are implemented using Java code. The Constraint 
element defines the class attribute that indicates the java class that implements the 
filter. The use of Java code allows for the specification of complex user defined filter 
implementation. This class is called when a transition or a norm is supposed to fire, 
and basically the constraint analyzes if the message values or any other events’ 
attributes are valid. In Code Fragment 2, a constraint will verify if the date expressed 
in the message is valid according to TAC rules; if it is not, the message will be 
blocked. In Code Fragment 1, a constraint is used to verify the number of messages 
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that the agent has sent until now; if it has been exceeded, the permission is no longer 
valid. 

<Transition id="rfqTransition" from="as1" to="as2" 
            message-ref="rfq> 
 <Constraints> 
  <Constraint id="checkDueDate" class="ValidDate"/> 
 </Constraints> 
 ... 
</Transition> 

Code 2. Constraint in transition tags 

3.4   Actions 

Environment actions, or just actions, are domain-specific Java codes that run 
integrated with XMLaw specifications. Actions can be used to plug services in an 
environment. For instance, an environment can call a debit service from a bank agent 
to automatically charge the purchase of an item during a negotiation. In this case, we 
specify in the XMLaw that there is a class that is able to perform the debit. 

Since actions are also XMLaw elements, they can be activated by any event such 
as transition activation, norm activation and even action activation. The action 
structure is showed in the example of Code Fragment 1. The class attribute of an 
Action specifies the java class in charge of the functionality implementation. The 
Element tag references the events that activate this action, and as many Element tags 
as needed can be defined to trigger an action. In this example, the action is used to 
update the context of the norm, counting the number of submitted messages. 

An action can be defined in three different scopes: Organization, Scene and Norms. 
An action defined in a Norm is only visible at this level. This means that any element 
in this scope can reference events issued by this action and that this action can get and 
update information at this level and upper levels. Actions defined in the scene scope 
can be referenced by any element at this level. And actions defined in the organization 
scope are visible to all elements at this level. 

4   M-Law 

Agent technology advances rely on the development of models, mechanisms and tools 
to build high quality systems. The design and implementation of such systems is still 
expensive and error prone. Software frameworks deal with this complexity by 
reifying proven software designs and implementations in order to reduce the cost and 
improve the quality of software. In this way, an object-oriented framework is a 
reusable, semi-complete application that can be specialized to produce custom 
applications [8]. 

M-Law was designed as an object-oriented framework, and its hotspots make 
possible to plug-in existing agent infrastructures, change the communication 
mechanism used by the agents, and plug-in new functionalities through the 
component module (to be detailed further in this section). 
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M-Law middleware has to provide the means to effectively support XMLaw and 
its evolutions. M-Law is composed of four modules: agent module, communication 
module, a mediator agent and an event module. The agent module contains classes 
that agent developers may use to develop agents. This module provides a set of 
facilities to interact with both the mediator and other agents through methods for 
receiving and sending messages. The Agent module uses a Communication module to 
send and receive messages. In fact, the Communication module contains a set of 
abstract classes and interfaces that have to be extended in order to provide real 
functionality. We have made some experiments using JADE Agent Framework to 
implement this module. In addition to Jade, we have also implemented a 
communication module using pure socket communication. This flexibility provides 
the means to build agents using different existing agent frameworks.  

On the side of the mediator agent, which is in charge of monitoring and enforcing 
agent interaction, there are three main modules: Event, Component and 
Communication. Those modules are not visible to agent developers but they were 
used to build the mediator agent and they can be extended to support new 
functionalities. Agent criticality analysis presented in [11] is an example of the 
component module extension.  

The event module implements event notification and propagation. It is basically an 
implementation of the observer design pattern [10] allowing elements for listening 
and receiving events. The communication module has a similar implementation as the 
communication module on the client side. 

The elements such as scenes, clocks and norms, are implemented to be plugged 
into the component module. The component module defines a set of concrete and 
abstract classes and interfaces that allows new functionality to be inserted.  
 

 

Fig. 5. Scene component 
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Components are the set of classes placed in the mediator that implements the behavior 
of the XMLaw language elements; for example, Figure 5 shows the scene element in 
XMLaw and its set of classes that implements its behavior. In Figure 5, the scene 
Element in XMLaw (therefore an XML element) is mapped to a descriptor 
(IDescriptor) and execution (IExecution) hierarchies in the internal implementation of 
the MLaw. Those hierarchies are hotspots of the component module, and they are 
used to plug in new elements in the law definition, allowing, for example, to change 
the XMLaw conceptual model. 

As shown in Figure 5, the core classes and interfaces of the component module that 
provide the hotspots that have to be extended by concrete elements are: 

• Handlers: SimpleHandler and ComposedHandler – The component module has 
a default XML parser that reads a law specification in XML and delegates the 
treatment of each XML tag to a specific handler. The handler is in charge of 
receiving the tokens provided by the parser and building the descriptor of the 
element. 

• IDescriptor – It represents the object model of the XML tag. For example, in 
Figure 6, the scene tag in XML is represented by the SceneDescriptor class. Its 
main responsibility is creating execution instances of the descriptor. 

• IExecution – An object that implements the IExecution interface is an instance 
of an element represented by an IDescriptor object. For example, a scene may 
be instantiated many times and even various scenes may be running at the 
same time (various auctions running in parallel, for instance). Each instance 
(IExecution) has to keep its instance attributes and control its lifecycle. The 
IExecution interface defines all the callback operations needed by the 
component module to control instances. 

As an example of how M-Law works in a practical scenario, suppose an agent 
playing the role of an employer asks for increasing its own salary to other agent 
playing the role of accountant. However, there is a norm specified in XMLaw stating 
that employers are prohibited from asking for salary increase. Despite the simplicity 
of this scenario, the example is useful to illustrate the basic flow of events inside the 
M-Law. Then, M-Law works in the following way: 

1. Mediator agent reads the XMLaw specification and starts the component 
module; 

2. Employer agent calls its communication module and sends the request 
message asking for salary increase; 

3. The communication module redirects the message to the mediator; 
4. Mediator receives the message through its communication module; 
5. Mediator fires an event of message arrival through event module; 
6. Event module notifies the component module; 
7. Norm element, which is part of the component module, receives the event, 

verifies that the message is not allowed and fires a message not compliant 
event; 

8. The mediator receives the message not compliant event and as a consequence, 
does not redirect the message to the accountant agent. 
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The main design objectives of M-Law were simplicity, flexibility and reuse. That 
is why the elements were implemented as components. In this way, some architectural 
decisions made have direct impact over scalability in the current version of M-Law. 
The following items discuss in more details some architectural and design aspects of 
M-Law: 

• Scalability – M-Law is implemented as a centralized mediator. In this way, it 
may become a bottleneck for very large systems. In fact, the design of XMLaw 
aimed primarily at expressivity (using abstractions such as constraints, scenes, 
etc.) and at flexibility (specialization of laws [4]). Also, although a centralized 
solution poses scalability questions, it allows the easy specification of global 
laws with no need for state synchronization. Furthermore, temporal problems 
are also avoided, once there is just one host controlling clocks. We are 
currently working on alternative, more decentralized, solutions to this problem. 
We are performing experiments on both a network of decentralized mediators, 
such as LGI [15], and hierarchal organized mediators, such as Internet DNS. 

• Expressivity – M-Law provides full support for XMLaw, which means it is 
possible to specify non-deterministic state-based machines, notions of 
commitments through norms, time sensitive laws, and execution of java code. 

• Flexibility – The use of indirect communication through events in combination 
with the component-based module makes it possible to add new functionality 
with little difficulty. However, it is known that event-based communication 
may lead to software that is harder to understand and debug due to the implicit 
nature of communication. We have tried to deal with this drawback by 
systematically building test cases, performing code inspections and writing 
exhaustive documentation. 

5   Using the Middleware 

To use the middleware it is necessary perform at least four tasks. First, one must write 
the interaction laws using XMLaw language. Second, the mediator has to be started 
by execution of the script files provided with M-Law. Then, one has to inform the 
mediator about the existence of the new Law (XMLaw file). Finally, the application 
agents may be started. The idea is to use the middleware as an environmental service. 
In other words, the middleware should be available for the agent developers once they 
have their agents running on the environment. 

Regarding the development of the application agents, agent developers may want 
to extend the agent class provided by the client API of M-Law. This class provides 
methods for sending and receiving of messages and methods for direct 
communication with the mediator, once the mediator can provide useful information 
about the current status of interaction, such as which scenes are running and how 
many agents are interacting. In fact, the class LawFacade provides methods for direct 
communication with the mediator, and agent class provides methods for sending and 
receiving messages. Figure 6 shows the details of those classes. 
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Fig. 6. Client API: LawFacade and Agent classes 

We encourage agent developers to use the agent class either by inheritance or 
delegation. Yet, developers are free to build their agents using any architecture or 
technology. The only requirement is that the agent should know both how to 
“speak” FIPA-Agent Communication Language2 and which messages the mediator 
expects. 

5.1   Case Study (CB) 

The Central Bank of Brazil regulates and supervises the national financial system. 
This experiment is running based on the SELIC system requirements. SELIC is the 
central depository of securities issued by the National Treasury and the Central Bank 
of Brazil. It also settles outright and rep transactions with these securities. Besides the 
National Treasury and the Central Bank of Brazil, commercial banks, investment 
banks, savings banks, dealers and brokers, clearing operators, mutual investment 
funds and many other institutions that integrate the financial system participate in 
SELIC as holders of custody accounts. In December 2004, the system was composed 
of 4,900 participants (or agents). 

SELIC system is clearly a system that has a central entity (Central Bank) that 
mediates and controls the interaction among the other entities. We have, then, 
specified the laws that the institutions must follow using XMLaw, and we have used 
M-Law as a mediator that control the interactions. We have implemented a 
prototype of a subset of the actual SELIC system for doing this experiment. The 
experiment was performed with 10 agents representing different financial 
institutions and 1 mediator agent (the MLaw). 

There are several requirements that influence the interaction of financial 
institutions in a committed operation, as the several types of messages that could be 
sent and the several behaviors that should be implemented according to the messages 
specified, including norms and constraints. Below (Figure 7), an interaction scenario 
is taken from SELIC. This interaction scenario contains three entities: two financial 
institutions and the SELIC.  

                                                           
2 FIPA is the organization that establishes specifications for agents. http://www.fipa.org/  
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In this scenario, a financial institution A (FI A) needs to sell bonds to the 
financial institution B (FI B). Below (Code Fragment 3), we illustrate the 
description of this basic negotiation protocol in XMLaw. We called it Negotiation. 
The specification provides the details regarding the expected attributes of the 
messages. Furthermore, there in the transition st1 there is a verification step 
implemented within a constraint. 

This example shows how the laws can be specified and then provided to the 
environment through the M-Law in order to effectively monitor and enforce agents’ 
behavior. On the side of the developers of the domain agents, it is necessary to extend 
the class Agent provided with the client API (Figure 6) and then use its methods to 
communicate. 

 

Fig. 7. SELIC example 

The preliminary results have shown that M-Law and XMLaw have brought some 
consequences such as: 

• Transparency of the process – Before using our governance solution, the 
system had all the laws hard-coded into the source code. With XMLaw the 
laws are specified in a purpose specific language which brings the 
specification to a higher level of abstraction and then decreases the distance 
between the requirements and the implementation. M-Law has a crucial role in 
this scenario, since it monitors and interprets the laws. 

• Better support for rules customization/configuration – Changing a law with 
XMLaw and M-Law is a matter of changing the XMLaw specification, i.e., 
there is no need to go into source code of the application. 
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<Scene id="Negotiation" time-to-live="infinity"> 
 <Protocol id="negotiation-protocol"> 
  <Messages> 
   <Message id="startMsg">...</Message> 
   <Message id="request"> 
    <Content> 
     <Entry key="CodMsg" value="SEL1054"/> 
     <Entry key="TpCompr" value="02" /> 
     <Entry key="NOPRET"/> 
    </Content> 
   <Message id="inform"> 
    <Content> 
     <Entry key="CodMsg" value="SEL1054"/> 
     <Entry key="TpCompr" value="04" /> 
     <Entry key="NOPRET"/> 
    </Content> 
   </Message> 
  </Messages> 
  <States> 
   <State id="s1" type="initial"/> 
   <State id="s2" type="execution"/> 
   <State id="s3" type="execution"/> 
   <State id="s4" type="success"/> 
  </States> 
  <Transitions> 
   <Transition id="start" from="s1" to="s2" 
       ref="startMsg" event-type="message_arrival" /> 
   <Transition id="st1" from="s2" to="s3" ref="request" 
       event-type="message_arrival" 
    <Constraint  
      class="selic.constraint.ConditionNOPRET" 
      semantics="NOPRETEmpty" /> 
   </Transition> 
   <Transition id="st2" from="s3" to="s4" ref="inform" 
      event-type="message_arrival"/> 
  </Transitions> 
 </Protocol> ... 
</Scene> 

Code 3. Negotiation structure definition 

6   Related Work 

It is possible to cite at least two important research projects in which the goals are in 
some sense similar to the goals of the work presented here. The first approach is 
proposed by Esteva [7]. He uses a set of concepts that have points of intersection with 
those used in XMLaw, in fact XMLaw has borrowed some of the ideas of Esteva and 
proposed new ideas. For example, both Esteva scenes and protocol elements specify 
the interaction protocol using a global view of the interaction. The time aspect is 
represented in the Esteva approach as timeouts. Timeouts allow activating transitions 
after a given number of time units passed since a state was reached. On the other 
hand, due to our event model, the clock element proposed in XMLaw can both 
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activate and deactivate not only transitions, but also other clocks and norms. 
Connecting clocks to norms allows a more expressive normative behavior; norms 
become time sensitive elements. 

Furthermore, XMLaw also includes the concept of actions, which allows execution 
of java code in response to some interaction situation. From the implementation point 
of view, Esteva does not provide the internal details of its framework (ISLANDER); 
but the general architecture proposes to use a set of mediators instead of using only 
one mediator. One consequence of this solution is that once a law is specified as a 
global view, all the mediators must constantly synchronize their internal states to keep 
them consistent. It means that for every message sent by an application agent, 
messages are broadcast among the mediators to synchronize the state. 

From the point of view of integration with other existent solutions, Islander allows 
the use of JADE as communication layer; but only Jade is allowed and there is no 
support for extension on this point. Furthermore, there is no indication about the 
possibility of integration between Islander and different approaches, such as 
integration tests and criticality analysis. 

Minsky [15] proposes a coordination and control mechanism called law governed 
interaction (LGI). This mechanism is based in two basic principles: the local nature of 
the LGI laws and the decentralization of law enforcement. The local nature of LGI 
laws means that a law can regulate explicitly only local events at individual home 
agents, where home agent is the agent being regulated by the laws; the ruling for an 
event e can depend only on e itself, and on the local home agent’s context; and the 
ruling for an event can mandate only local operations to be carried out at the home 
agent. On the other hand, the decentralization of law enforcement is an architectural 
decision argued as necessary for achieving scalability. 

However, when it is necessary to have a global view of the interactions, the 
decentralized enforcement demands state consistency protocols, which may not be 
scalable. Furthermore, it provides a language to specify laws and it is concerned with 
architectural decisions to achieve a high degree of robustness. In contrast, M-Law 
uses XMLaw, which provides an explicit conceptual model and focuses on different 
concepts, such as Scenes, Norms and Clocks. In other words, in our opinion, LGI 
design aimed primarily at decentralization and XMLaw design aimed primarily at 
expressivity and at possibilities for specialization [4]. A current limitation of XMLaw 
is the centralization of the mediator. 

A promising direction is to investigate how XMLaw specification could be 
compiled into decentralized LGI mediators. In this way, LGI could be viewed by 
having the basic foundation to build higher level elements, such the ones in XMLaw. 
Moreover, by using M-Law, it is possible to extend the framework hotspots and 
introduce new components, which represent concepts in the conceptual model; and 
change the communication mechanism. 

7   Conclusions 

Governance is required in open MAS Environments. A trustable Environment should 
offer a service to guarantee that the rules of interaction are obeyed. In this paper, we 
proposed to include a governance service within any open MAS Environment. This 
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paper has presented some of the main ideas behind research into governance of agent 
systems. Then, from a Software Engineering perspective, we have proposed a 
middleware that allows the development of law-regulated systems. We have presented 
the main design goals of the middleware, such as flexibility and integration with other 
platforms. We believe that this middleware is an enhancement of the current state-of-
the-art of Software Engineering for Governance in the sense that it supports a 
language that expresses the main concepts of governance with a good level of 
expressivity, and also due to its design concerns, which make use of techniques such 
as frameworks and components. Current implementation relies on a centralized 
mediator, which is a limitation on scalability. We are currently studying the design of 
a future distributed version, inspired from LGI decentralized mediators. 

We have shown the use of the middleware on an example inspired from a real 
application of the central bank of Brazil. We hope that this example could illustrate 
some benefits brought by the use of M-Law, and more generally speaking, the merits 
of MAS governance for future applications.  
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Abstract. Traffic control can be regarded as a multiagent application
in which car-agents and traffic-light-agents need to coordinate with each
other to optimize the traffic flow and avoid congestions. Environment ab-
stractions naturally suit this scenario in that agents actions are mainly
driven by traffic-related information that are distributed across the en-
vironment both at a practical and conceptual level. In this context we
present traffic-control mechanisms on the basis of our Co-Fields model
and discuss some experimental results we obtained in simulations that
validate our proposal.

1 Introduction

Traffic management is a very complex problem. Millions of people every day
suffer from congestion in urban road networks. This has led researchers to wonder
whether is possible to regulate traffic flow in order to reduce the congestion (i.e.,
to reduce the average time that a car takes to reach its destination) [1,2,3,4,5].
Apart from long-term structural solutions (i.e., building new roads), it is possible
in principle to control the urban traffic flow either acting on the individual cars
(that could try to move avoiding traffic jams) or acting on the traffic-lights (that
could try to dynamically optimize the overall throughput).

Both these candidate approaches naturally suit the agent paradigm and it is
rather easy to conceive such a scenario in terms of car-agents and traffic-light-
agents coordinating their actions to improve the traffic flow. It is also rather easy
to understand that these kind of applications (where the agents’ goal is inherently
related to their motion in an environment) are killer-applications with regard to
the environment-in-multi-agent-system idea. In this context, in fact, environment
abstractions are natural and their power in decoupling agents’ actions and in
providing context-awareness is undisputable [6,7].

The main contribution of this paper is to illustrate how the Co-Fields [8]
model can be fruitfully applied to this application scenario, and to present some
experimental results we obtained (in simulations) adopting it.

The Co-Fields model is based on distributed data structures spread across an
environment implementing digital mockups of physical fields (such as the gravi-
tational one). Such distributed data structures mediate and rule the coordination
activities among agents that act on the the basis of the perceived local field con-
figuration [8]. In our case study, a traffic field will be used to convey aggregated
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information about the current traffic conditions. In each area, this field will have
a magnitude proportional to the amount of traffic in there. Car-agents can use
such information (which is actually an environment abstraction) to coordinate
their motion avoiding traffic jams. In a similar way, traffic-light-agents can tune
their green-light policy according to the perceived value of the traffic field.

The rest of this paper is organized as follows. Section 2 presents some back-
grounds. In particular, it briefly illustrates the Co-Fields model and describes
the GLD (Greed Light District) simulation platform where we run our experi-
ments. Section 3 presents our proposal to control traffic on the basis of Co-Fields.
Section 4 shows and discusses experimental results. Finally, Section 6 concludes
and sketches future works.

2 Backgrounds

In this section we will briefly review the coordination model Co-Fields [8] that is
at the heart of our proposal, and we present the Green Light District [9] platform
used to perform simulations and experiments on realistic traffic situations.

2.1 Co-Fields

Co-Fields is a coordination model for multiagent systems in which environment
abstractions have a central role. The main idea in Co-Fields is to provide agents
with an effective and easy-to-use representation of their operational environment.
To this end, Co-Fields delegates to the infrastructure the task of constructing and
automatically updating an essential distributed “view” of the system situation
- possibly tailored to application-specific coordination problems - that “tells”
agents what to do (i.e., how to act to implement a specific coordination patterns).
Agents are simply let with the decision of whether to follow such a suggestion
or not.

To achieve this goal, we take inspiration from the physical world, i.e., from the
way particles in our universe move and globally self-organize accordingly to that
contextual information which is represented by potential fields. In particular,
in our approach, contextual information is expressed in the form of distributed
computational fields (Co-Fields). A computational field is a distributed data
structure characterized by a unique identifier, a location-dependent numeric
value, and a propagation rule identifying how the field should distribute across
the environment and how its value should change during the distribution. Fields
are locally accessible by agents depending on their location, providing them a lo-
cal perspective of the global situation of the system. Each agent of the system can
propagate specific fields across the environment, conveying application-specific
information about the local environment and/or about itself. Agents can lo-
cally perceive these fields and act accordingly, e.g. following the fields’ gradients.
The result is a globally coordinated behavior, achieved with very little efforts
by agents.
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More in detail, the Co-Fields approach is centered on few key concepts:

1. Contextual information is represented by “computational fields”, spread by
agents and/or by the infrastructure, diffused across the environment, and
locally sensed by agents;

2. A coordination policy is realized by letting the agents act on the basis of the
local field configuration, the same as a physical mass moves in accord to the
locally sensed gravitational field.

3. Both environment dynamics and agents’ actions may induce changes in the
fields’ surface, automatically propagated by the infrastructure, thus inducing
a feedback cycle (point 2) that can be exploited to globally achieve a global
and adaptive coordination pattern.

In the next section we will present how this model can be easily applied to
the traffic control problem.

2.2 Green Light District

GLD (Green Light District) is a program that performs discrete simulations
of road networks. The full application consists of two parts: an Editor and a
Simulator. The Editor enables the user to create an infrastructure (a road map)
and save it to disk. The Simulator can then load the map and run a simulation
based on that map. Before starting a simulation, the user can choose which traffic
light controller and which driving policy will be used during the simulation. A
traffic light controller (or simply TL-Controller) is an algorithm that specifies
the way traffic lights are set during the simulation (i.e., it specifies traffic-lights
green-red policy). A driving policy specifies which are the paths followed by
cars to reach their destinations. Since GLD is open source, it can be easily
extended in order to add new algorithms for TL-Controllers and for driving
policies. This is exactly what we did to test our algorithms. In order to get a
more realistic simulation, two values can be adjusted for each edge node in the
map (i.e., for each node that can put cars into the map):

Spawn frequency: is the frequency (or probability) at which a node spawns new
road users. Its values range between 0 and 1. For example, a spawn frequency
of 0.5 for a node means that the node will spawn one car every other time step
(or cycle).

Destination frequency: a random destination point is assigned to every car
entering the map. With this parameter it is possible to specify the probabil-
ity distribution from which the destinations are drawn. This allows to create
crowded destinations and a not-uniform traffic-flow.

While running a simulation (see Fig. 1), GLD can track different types of
statistics such as the number of road users that reached their destination, the
average junction waiting time or the average trip waiting time. The data collected
from the simulation can be displayed in a window, or exported in text format
for further analysis.
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Fig. 1. The GLD traffic simulator

3 Traffic Control

In this section, we describe the Co-Fields policies we realized to implement traffic
control. We realized both mechanisms to control cars and traffic-lights. The
effectiveness of these policies will be tested with the aid of a simulation tool.

The most direct approach to try to manage traffic is to improve the traffic light
control algorithms (i.e., the way traffic lights are switched to regulate the flow of
cars). So far traditional methods have tried to optimize the flow of vehicles for a
given car density by setting appropriate phases and periods of traffic lights [4].
However, the use of static timing patterns does not take into account the actual
state of traffic (for instance, the current speed of cars might be greater than the
expected one). In other words, traditional traffic lights controller cannot adapt
to the current car density, and thus they cannot manage correctly unusual and
extraordinary situations (for instance, a stream of cars leaving a stadium or a
big concert) [10,11].

As an alternative to the previous approach, we can imagine a network of
“intelligent” traffic lights that can perceive the current state of traffic and dy-
namically self-organize their timings, without the need of any complex central
controller. The core idea of our approach is to induce a cooperative behavior
between traffic lights, by means of simple, field-mediated interactions.

Improving traffic lights control algorithms is not the only way to make traffic
management more efficient. Thanks to the wide diffusion of low-cost wireless
communication devices, new approaches to the problem are becoming feasible.
It is not difficult to imagine that, in few years, each car will be equipped with a
mobile computer capable of communicating with a computer network embedded
in the city streets and junctions. In this way, a car could get useful information
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about traffic jam or queues, and suggest alternative paths to its driver. In this
scenario, both traffic lights and cars can be seen as simple software agents able
to interact with each other in order to improve traffic conditions [12,13,14].

3.1 Co-Fields Cars

The aim of our Co-Fields driving policy is to guide the cars toward their destina-
tions avoiding the most crowded areas. With reference to Fig. 2: let us suppose
that five cars are leaving node A to reach node H. If a shortest-path driving
policy is used, all the cars will follow the path ACFH. If our Co-Fields driving
policy is used, the last two cars will follow an alternative (possibly longer) path,
because the shortest one is too crowded.

Fig. 2. Cars avoiding crowded paths

I order to obtain such policy using the Co-Field model, we need the cars to
perceive two kind of fields: a distance field and a traffic field.

Distance Field
This field is generated by each node of the map, and its values does not change
over time. It has value 0 in the node that generates it. In a generic node N it
has a value equal to the length of the shortest path between N and the node
from which the field generates. If DFH is the distance field generated by node
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a)

b)

Fig. 3. (a) Distance field generated by node H. (b) Values of the distance field generated
by node H.

H, then on each node a car can perceive the fields DF1, DF2, ... , DFN , where
N is the number of nodes in the map.

Traffic field
The traffic field (TRF) represents the intensity of traffic in a given point of the
map. In each lane, it has a value equals to the number of cars on the lane, divided
by the length of the lane. The traffic field is dynamic and its values change over
time depending on the car’s movements.

A car heading to node H evaluates a combined field (CF) 1 as the linear com-
bination between the distance field (DF) generated by node H and the perceived
traffic field (TRF):

CF = DFH + α · TRF

The first term of the coordination field is a field that has its minimum point
in correspondence of the destination node H. Because of the shape of this field,
then, cars following downhill this field are guided towards theirs destinations.
1 This is actually the Coordination Field described in [8].
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Fig. 4. Traffic field

The second term takes into account traffic. Having its maximum points where
the car density is high, the field TRF (with α > 0) tends to repulse cars from
these points. For this reason, α can be regarded as the weight assigned to traffic
information in the choice of the path. If α is very small, cars will follow their
shortest path without considering traffic conditions. If α is very high, cars will
prefer a possibly longer path whenever the shortest one is a bit crowded (see
Fig. 5). From the above description is should be clear that α should be set to
the correct value not to underestimate or overestimate the traffic situation. For
example, cars in Fig. 2 clearly overestimate the traffic condition (α is too high)2.

3.2 Co-Fields Traffic Lights

The key idea in our Co-Fields TL-Controller is to propagate a computational field
throughout the map, that helps traffic lights to coordinate with their immediate
neighbors.

Each traffic light evaluates the local value of a specific Green Field (GF) as
the sum between the number of cars waiting in its queue and the number of cars
waiting in the queues of those traffic lights that can send cars toward it. If N(s0)
is the number of cars waiting for traffic light s0, and s1, s2, ... sn are the traffic
lights that can send cars to s0, then s0 evaluates its green field as follows:

GF (S0) =
N(s0)

l0
+ γ · (N(s1)

l1
+

N(s2)
l2

+ ... +
N(sn)

ln

)

where li is the length of the lane regulated by si. Fig. 6 shows how GF (s0)
is computed. In the previous formula, γ measures the importance given to the
traffic conditions of neighboring traffic lights. If γ = 0 there is no coordination
between neighboring traffic lights: each one takes its own decision simply looking
at the number of cars on its lane.
2 This misconfiguration was actually made on purpose to emphasize and illustrate the

Co-Fields driving policy.
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Fig. 5. A car following downhill the combined field. For example in the road between
C and F there are 3 cars. The field value there is 1 + α · 3.

Fig. 6. Example of calculus of GF for traffic lights S0

We can regard the intensity of the Green Field as a measure of the advantage
that can be obtained if the underling traffic light is set to green. At every step of
the simulation and for every junction, the traffic lights having the highest value of
green field are set to “green”, while the others are set to “red”. Serious problems
arise when the green field changes its values too rapidly over time, because in this
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case traffic lights switches from “red” to “green” very frequently, and cars spend
too much time waiting for the “yellow” light to become “green”. For this reason we
limited the maximum rapidity of variation ofGF by adding a new parameter,Tmin,
which represents the minimum time between two consecutive variations of GF.

It is worth noting that this approach is particulary interesting in that – in
contrast with the vast majority of field-based applications [15] – it involves a
coordination task that is not related to motion coordination.

4 Experiments

In this section we want to test that the coordination policies presented in the
previous section for cars and traffic lights can improve traffic management by
avoiding or reducing traffic congestion. Road networks congestion happens when
the rate at which new cars enter the map is greater than the rate at which they
exit. Looking at the chart that plot the number of arrived road users over time,
road-net congestion appears as a flattening of the curve (it means that no new
cars get to their destination).

4.1 Simulation Set-Up

For our experiments, we decided to use a map like the one in Fig. 7, which
consists in a square 8x8 grid of junctions. All the roads have exactly 2 lanes
-one for each direction- and a length of 50 blocks. Each car has a length of 2
blocks and a speed of 2 blocks per time step. Cars enter the map from 32 edge
nodes placed along the perimeter. Destination for cars spawned by north nodes is
randomly chosen from south nodes; destination for cars spawned by west nodes
is chosen from east nodes, and so on. This is necessary if we want the traffic to
be evenly spread throughout the map.

Fig. 7. Map used in the experiments
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4.2 Results of the Experiments

Co-Fields traffic lights controller. In order to test the performance of our
Co-Fields TL-Controller, we compared it with a standard TL-Controller that
simply switches lights according to a pre-determined cycle. Thus, if the standard
TL-Controller is used, traffic lights remain green for T cycles of simulation,
switch to red for the next T cycles, and then become green again, and so on.
Parameter T is said to be the period of the standard TL-controller. Graphs in
Fig. 8 show the results of simulations on the map presented at the beginning of
this section. A spawn frequency of 0.2 cars/cycle was set for every edge node.
It can be seen that the Co-Fields method performs better than the standard
method. To make sure that the advantage is not due to the particular choice of
T and Tmin, we set the same value for T and Tmin (results for T = Tmin = 4
are shown in plots B and C). Then we repeated the experiment with different
values of T and Tmin (results for T = Tmin = 10 are shown in plots D and E).
In all tests, standard TL-Controllers reach deadlock after about 2500 simulation
cycles, while Co-Fields TL-Controllers manage to avoid it. The A line shows the
performance of a random TL-Controller which randomly switches lights at every
cycle.

Co-Fields driving policy. Before comparing the performance of our Co-Fields
driving policy with a standard shortest-path driving policy, we performed some
simulations to find the optimal value for parameter α . During all tests, a standard

Fig. 8. Performance of various traffic light controllers
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TL-Controller was used (with period T = 10 cycles) and a spawn frequency of
0.2 was set for each edge node. Results obtained for various values of α (see Fig.
9) indicate that the algorithm has best performance when α ranges between 2
and 7.

Fig. 9. Performance of Co-Fields driving policies varying α

Fig. 10. Comparison between shortest path and Co-Fields driving policies
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Then we compared our Co-Fields driving policy (with α = 7) with the short-
est path driving policy (i.e., a driving policy that makes cars strictly follow the
shortest path towards their destinations without avoiding crowded areas). Re-
sults displayed in Fig. 10 shows that the shortest path driving policy lead to
deadlock after about 2500 cycles, while our driving policy avoids it.

Comparison between Co-Fields cars and Co-Fields traffic lights. We
conclude this section with a comparison between the two presented approaches.
In order to understand the interaction between the two methods, we set a very
high traffic level in the map (0.3 cars/cycle for each edge node) so that both
methods, separately, do not manage to avoid net congestion. Then we applied
them simultaneously. Results are shown in Fig. 11. The worst performance (A)
is obtained when traditional methods are used both for traffic lights control and
for driving policy (i.e. standard TL-Controller and shortest path driving policy).
This lead to deadlock after about 1500 cycles. Better results are obtained if
the Co-Fields TL-Controller or the Co-Fields driving policy are used. In these
cases (B and C lines) net congestion is clearly delayed. Concurrent use of both
approaches (E) yields the best performance, and manage to avoid congestion.
The following parameters were used during simulations:

– Standard TL-Controller with T = 10
– Co-Fields TL-Controller with γ = 0, 2 and Tmin = 10
– Co-Fields driving policy with α = 4

Apart from these promising experimental results and the Co-Fields strengths
in managing agents’ coordination activities, a correct evaluation of the Co-Fields
model cannot overlook the following drawbacks:

1. Co-Fields and the strictly local perspective in which agents act promote a
strictly greedy approach in their coordinated actions. In fact, agents act on
the basis of their local viewpoint only, disregarding that a small sacrifice now
can possibly lead to greater advantages in the future. With regard to traffic,
this implies, for example, that cars would be better queue for a short-time
other than looking for uncrowded path that can be longer or also (more)
crowded in other areas.

2. The Co-Fields model is not supported by a well-specified engineering
methodology. In other words, we still have not identified a principled way to
help us identify, given a specific coordination pattern to be enforced, which
fields have to be defined, how they should be propagated, and how they
should be combined by the recipient agents. For example, although the pre-
sented coordination tasks are rather natural and easy to be identified, the
coefficients specifying how the different fields have to be combined have to
be hand-tuned.

3. From an implementation point of view, the Co-Fields approach requires a
distributed computer infrastructure to store the distributed data structures
representing the fields. In the presented approach, all the possible destina-
tions have to propagate a field across this infrastructure and this of course
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Fig. 11. Comparison between Co-Fields driving policy and Co-Fields TL-Controller

might create scalability concerns. However, it is rather easy to extend the
current model to aggregate fields and save resources. For example, the fields
associated to close destinations could be merged together to save bandwidth
and storage, once a suitable distance from their sources have been reached.
Such an extension, is in our future work.

5 Conclusion and Future Work

In this paper we presented a field-based approach to traffic control. Both mech-
anisms to control cars and traffic-lights have been presented.

While the reported tests are encouraging, a more thorough evaluation is re-
quired to better assess real world potential. In particular, we think that the
following points are critical to better assess our model:

1. One obvious and important step is to use a more sophisticated simulator
e.g., CORSIM [16], TRANSYT7F [17], or SimTraffic [18] that better ap-
proximates realistic traffic behavior. With a more sophisticated simulator, we
could also test real intersection configurations and historical traffic patterns,
which would allow a more objective assessment of the results.

2. It would be also important to measure other parameters in order to better
understand the pros and cons of our proposal. Parameters such as: the aver-
age journey time, the waiting time, the number of detours cars have to take
are important aspects to assess the model.
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3. In addition, it would be interesting to compare our approach with more
advanced and sophisticated control mechanisms both in terms of cars and
traffic-lights.

Finally, a more pragmatic but nonetheless critical followup to this research
would be an assessment of the costs and additional factors necessary to deploy
a system like ours in an actual urban environment.
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Abstract. Self-organisation is being recognised as an effective concep-
tual framework to deal with the complexity inherent to modern artificial
systems. In this article, we explore the applicability of self-organisation
principles to the development of multi-agent system (MAS) environ-
ments. First, we discuss a methodological approach for the engineering
of complex systems, which features emergent properties: this is based on
formal modelling and stochastic simulation, used to analyse global sys-
tem dynamics and tune system parameters at the early stages of design.
Then, as a suitable target for this approach, we describe an architecture
for self-organising environments featuring artifacts and environmental
agents as fundamental entities.

As an example, we analyse a MAS distributed environment made of
tuple spaces, where environmental agents are assigned the task of moving
tuples across tuples spaces in background and according to local criteria,
making complete clustering an emergent property achieved through self-
organisation.

1 Introduction

The typical MAS scenario involves a set of autonomous situated entities inter-
acting with each other and exploiting resources in the environment to achieve
a common goal [1,2]. When designing the MAS environment, other than func-
tional properties concerning the available services offered to agents, one has also
to consider non-functional properties. First, it is crucial to balance the compu-
tational power devoted to the provision of such services: several maintenance
activities must be performed on-line and in background to guarantee a certain
level of quality of service at low computational cost. Moreover, the design of
environment should feature the emergence of quality properties: since the dy-
namics of interactions with agents cannot be fully predicted, several unexpected
situations have to be handled automatically and effectively.

As standard optimisation techniques (e.g. in resource allocation) are offline
and possibly computationally expensive, we need to rely on different approaches.
Self-organisation theory is a rich source of inspiration for sub-optimal strategies
that can be performed on-line, like every natural system does, and that require
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little computational power, e.g. because of local communications. For these rea-
sons, we look for a methodological approach for the development of MAS envi-
ronments that can systematically adopt self-organisation principles, as a means
to more effectively and efficiently provide agents with useful services.

We consider the A&A (agents & artifacts) meta-model as our reference model
for MAS [3,4]. Artifacts are environment abstractions encapsulating resources
and services provided by the environment to agents: agents exploit artifacts
in order to achieve individual as well as social goals. Following some early ex-
ploration of self-organising systems [5,6], we see the environment as a set of
artifacts, exploited by user agents and managed by environmental agents, the
latter having the responsibility of regulating artifact behaviour and state, and
making interesting quality properties emerge whenever needed. This vision is
of course shared by the Autonomic Computing initiative [7]: in particular Au-
tonomic Computing emphasises the need for artificial systems to self-configure,
self-protect, automatically recovers from errors (self-healing) and self-optimise.

In order to focus on the the application of self-organisation principles to the
engineering of MAS environment, we devise a methodological approach based on
formal modelling and stochastic simulations. In spite of the difficulty of designing
“emergence”, this approach allows us to preview global system dynamics and
tune the system model until possibly converging to a system design matching
the expected requirements.

As a case study we discuss an application called collective sort, which is a gen-
eralisation of the brood sorting problem of swarm intelligence [8] to a distributed
tuple space scenario [9]. User agents interact with each other by putting and re-
trieving information on the environment in the form of tuples: the distributed
environment consists of a set of artifacts resembling tuple spaces, which are kept
ordered by environmental agents exploiting self-organising techniques. The ob-
jective is to devise a fully-distributed, swarm-like strategy for clustering tuples
according to their type (as a tuple template), so that tuples with same type
are aggregated into the same, unique tuple space. In this case, it is the agent-
environment coupling that creates the feedback loop supporting emergence of
ordering, by balancing between positive and negative feedback [10]. We provide
an architecture and simulation results for this problem, showing the effectiveness
of the strategy proposed.

This paper is structured as follows: in Section 2 we discuss our methodological
approach for engineering self-organising systems, and its application to our basic
architecture for MAS environments. We then apply the methodology—which is
based on the three steps of modelling, simulation, and tuning—to the collective
sort scenario. Specifically, in Section 3 we devise a model for a self-organising
environment, in Section 4 we show simulation results from the system model in
order to investigate global dynamics, and then in Section 5 we tune the strat-
egy for achieving better performance, relying on load-balancing techniques. In
Section 6 we discuss some related work, and finally in Section 7 we conclude by
pointing at some possible future developments.
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2 A Design Approach for Self-organising MAS
Environments

In the MAS community, several engineering methodologies have been developed
[11,12,13], but they typically do not face some of the most important issues in
self-organisation: Given a problem, (how) can we design the individual agent’s
behaviour in order to let the desired property emerge? Once a candidate be-
haviour is specified, (how) can we guarantee that the specific emergent property
will appear?

We recognise in general two approaches to tackle the above issues: (i) analysing
the problem and designing by decomposition an ad-hoc strategy that will solve
it; (ii) observing a system that solves a similar problem, and trying to reverse-
engineer the strategy. The former approach is applicable only to a limited set
of simple scenarios, since the non-linearity in the rules makes the results quite
difficult to predict—indeed, it hardly scales with the complexity of a problem
[14]. A self-organisation viewpoint suggests that the latter approach might be
more fruitful: indeed, several tasks accomplished by social systems have their
counterpart in computer science algorithms and architectures [8,15]. Unfortu-
nately, strategies for specific problems are often unknown, so they are inferred
by modifying the original models: but then, how can we guarantee that such
modifications would not produce side-effects, namely, behaviours that signifi-
cantly differ from the expected one?

In general, ensuring that a design leads to the desired dynamics is still an
open issue. Although it is possible to verify properties of a deterministic model
via automated tools and techniques—e.g. with model checking—, as soon as
stochastic aspects enter the picture, verification becomes more difficult—existing
works in this context appear to be somehow immature. Hence, although applying
model checking techniques is part of our medium-term research objectives—see
a discussion in Section 7—it is necessary to resort to a different methodology for
analysing the behaviour and qualities of a design.

Then, in the remainder of this section, we describe our methodological
approach and, next, how concepts from the methodology map onto design
abstractions.

2.1 A Methodological Approach Based on Formal Modelling and
Stochastic Simulations

Our approach starts from the deliverable of analysis, and has the goal of devising
out an early design of the system, to be later detailed and implemented. However,
we do not aim at devising a complete methodology: instead of covering the
complete development process and tackling all functional and non-functional
aspects, we rather intend to use it in combination with other existing AOSE
methodologies. So, working at the early design phase, in our approach we aim
at evaluating several strategies and their crucial parameters, with the goal of
discovering the one that could provide the quality attributes required for the
application at hand.
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In particular, our approach is articulated around three activities:

Modelling — to develop an abstract formal specification of the system;
Simulation — to qualitatively investigating the dynamics of the system;
Tuning — to change model parameters to adjust system behaviour.

In the modelling activity, we formulate a few strategies that seemingly fit the
behaviour to be implemented: as far as self-organisation is concerned, natural
models are an obvious source of inspiration. Such strategies should form an ab-
stract model of the system for possible architectural solutions. Specifically, in
the case of self-organising systems where complex patterns arise from low-level
interaction, selective models can make us focus on the properties of interest. To
enable further automatic elaborations—such as simulation and automatic verifi-
cation of properties—these descriptions should be provided in a formal language,
which promotes unambiguity and precise selection of the features to be modelled
and those to be abstracted away. Although we do not endorse any particular lan-
guage, given the nature of the target systems we prefer languages that easily and
concisely express notions such as distribution, concurrency, communication and
compositionality [5]. Moreover, they must be able to deal with stochastic as-
pects, which are required in order to properly abstract over unpredictability of
certain behaviours and events.

The deliverable of the modelling phase is then a formal specification. In the
subsequent activity, this specification is used in combination with simulation
tools in order to generate simulation traces. Simulation is a very useful tool able
to provide a first feedback about the suitability of a solution: for this purpose,
tools like SPiM [16] for the stochastic π-calculus have been proved to be quite
useful [5,6]. Tools that do not directly support simulation features could be ex-
tended by using e.g. the Gillespie algorithm [17], as done for the SPiM simulator
[18]. Some general-purpose engine can also be developed to this end, like e.g. the
Maude term rewriting system module described in [9].

Since self-organising systems tend to display different qualitative dynamics
depending on initial conditions, it may happen that simulations of the current
design do not exhibit interesting behaviours: the model is then to be tuned until
the desired qualitative dynamics is reached. Thus, the parameters employed
works as a coarse set of parameters for implementation, while fine tuning is
delayed until the actual implementation has been developed. The tuning process
may end up with unrealistic values for parameters, or simply may not converge to
the required behaviour, meaning that the chosen model cannot be implemented
in a real scenario: in this case another approach should be tested, going back to
the modelling activity.

2.2 A Basic Architecture for Self-organising Environments

The multi-agent paradigm is a natural choice for modelling natural systems and
developing nature-inspired, artificial ones. In particular, in this paper we adopt
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Fig. 1. Basic architecture for a MAS featuring environmental agents as artifacts
administrators

the agents & artifacts meta-model (A&A) for MAS, where MAS are modelled
and engineered based on two fundamental abstractions: agents and artifacts
[3,19]. Agents are the (pro-)active entities encapsulating control: they are in
charge of the goals/tasks that altogether build up the whole MAS behaviour.
Artifacts are instead the passive, reactive entities in charge of the services and
functions that make individual agents work together in a MAS, and which shape
agent environment according to the MAS needs. Other than being an interpre-
tation means for a number of existing concepts in MAS—coordination media,
e-institutions, stigmergic fields, web services [3]—this meta-model has also an
impact on practise: it is e.g. the basis of the CArtAgO project for developing a
general-purpose infrastructure for MAS environments [4].

Based on this meta-model, we focus on the development of environments
featuring self-organisation properties, accordingly propose an architectural solu-
tion, and then discuss the impact on methodological issues. From the viewpoint
of (user) agents, that exploit the services provided by artifacts, we see the envi-
ronment as composed by a set of environmental agents, other than the artifacts
themselves. As depicted in Figure 1, artifacts exhibit a usage interface which
is accessible to user agents, and which provides the artifact services, while the
management interface is accessible only to environmental agents, and provides
features related to controllability and malleability of artifacts. Environmental
agents are in charge of managing resources—say, in an Autonomic Computing
style—by adjusting artifact behaviour and status, and by performing periodic
administration tasks, possibly taking part in the self-organisation process that
the environment should globally exhibit. In particular, this architecture supports
the positive/negative feedback loop together with agents: since self-organisation
is an active process, it is often the case that artifacts alone cannot close the
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feedback loop because of the lack of pro-activity, which is instead featured by
environmental agents.1

2.3 Relating the Methodology to the Architecture

Modelling. When modelling an environment according to our architecture,
we have to consider three elements: (i) the user agents requesting services, (ii)
the artifacts providing the interface to the services, and (iii) the environmental
agents administering the artifacts and driving the self-organisation process (when
needed).

Starting from user agents, we observe that they cannot be modelled as fully
predictable entities because of their autonomy, and because their behaviour is
mostly unknown to the environment designer: abstraction is a necessary process
here to cope with the peculiarities of agents to come. Hence, stochastic models
are to be used in order to abstract away from agent internal behaviour, simply
exposing timing and probability aspects—such as e.g. at which rate they interact
with artifacts.

On the other hand, the behaviour of artifacts is predictable by definition,
for artifacts automatise the service: hence, in the modelling stage it is typically
possible to precisely model their internal state and describe their step-by-step
behaviour.

Finally, environmental agents lie somehow in the middle: because they are
strongly coupled with artifacts, they are typically designed along with them.
Hence, in spite of their autonomy, we can make quite reliable predictions about
the behaviour of environmental agents, though stochastic aspects can be anyway
useful to model their effect on artifacts.

If the system is designed to exhibit emergent properties, then user and envi-
ronmental agents are necessarily functionally coupled: such a coupling is required
for the positive/negative feedback loop, in that the result of actions performed
by user agents eventually triggers a response by environmental agents. Hence,
some assumptions about the nature of feedback have to be made: however, these
assumptions are not too restrictive, since the set of services offered by the envi-
ronment is limited.

Simulating. When it comes to simulating, it is necessary to provide a set of
operating parameters for the system modelled. It is worth noting that, for the
simulation to be meaningful, parameters should represent actual values, oth-
erwise it is not possible to decide about the feasibility of the solution: hence,
devising such parameters is probably the most crucial aspect in the simulation
1 It is worth noting that our view of MAS environment should not be considered as a

departure from the original idea of the A&A model, where the environment is made
by artifacts alone. Indeed, drawing the boundary of the environment is a subjective
task: as far as we call “environment” what is outside a particular subset of agents,
it could be naturally seen as made of artifacts and by the remaining agents. So,
our architecture here is to be considered as a possible specialisation of the A&A
meta-model to the case of self-organising environments.
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stage. It is then possible to investigate the system global dynamics before ac-
tually implement it. In order to preview certain behaviours, it is necessary to
sweep through unbounded parameters: tweaking parameters is almost unavoid-
able since—working with complex systems—small modifications likely lead to
qualitatively very different results.

While it is possible to precisely characterise the behaviour of artifacts and
environmental agents, we cannot foretell user agents behaviour: then, stochastic
and probabilistic models can abstract from those details, though introducing
simplifying assumptions that should be later validated. What we actually need
is to devise likely scenarios—completeness is typically unfeasible—each of which
characterised by a statistical description of user agents’ interaction with arti-
facts. For example, if system behaviour depends on the distribution in time of
service requests, it is necessary to investigate several scenario, e.g. even, random,
burst distribution and the like. The goal of each simulation is then to understand
whether the behaviour of environmental agents is suitable to achieve the prop-
erties required.

Tuning. While parameters for artifacts and user agents likely reflect an actual
implementation, environmental agents are the real place where tuning occurs:
working parameters of environmental agents are to be adjusted, keeping them
within the range of physical feasibility, until the system exhibits the desired be-
haviour. If the required behaviour is not reached with a valid set of parameters,
it is then necessary to tune the model until such a behaviour is displayed. Mod-
ifications usually involve aspects linked to locality and computational cost, that
is, in order to make the system converge to the desired state it might be neces-
sary to extended the locality boundaries to let an environmental agent gather
further information, or to adopt more sophisticated strategies. However, it is
worth noting that pursuing that line too forward moves us away from what is
the self-organisation philosophy towards the more traditional approach of de-
vising optimal solutions—which typically require too much computational price,
and are therefore unsuitable e.g. for on-line tasks.

In the end, it may happen that, despite these modifications, the desired be-
haviour is not met: then, we have to look for different models and strategies,
going back to the modelling stage.

3 Step 1: Modelling the Collective Sort Strategy

In the rest of the article, we apply our methodology to a case we name collective
sort [9]:

1. we start by defining the problem and identifying key aspects of a possible
solution;

2. the strategy is translated into a suitable formalism, enabling the execution
of stochastic simulations and analysis of results;

3. variations on the strategy can be evaluated by tuning system model so as to
increase the expected performance.
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3.1 Motivation and Problem Description

We aim at developing an environment that keeps similar tuples—i.e. having
the same template—clustered in the same tuple space, uniformly distribut-
ing the load across the nodes where tuple spaces reside. In several scenar-
ios, sorting tuples may increase the overall system performance. For instance,
it can make it easier for an agent to find an information of interest based
on its previous experience: the probability of finding an information where a
related one was previously found is high. Moreover, when tuple spaces con-
tain tuples of one kind only, it is possible to apply aggregation techniques to
improve performance, and it is generally easier to manage and achieve load-
balancing.

Increasing system order however comes at a computational price. Since we
want the sorting process to take place on-line and in background, we look for
suboptimal algorithms, which are able to guarantee a certain degree of ordering
in time without requiring too much computational power. To this purpose, we
look at existing self-organising systems to find one that exhibits this capability
of sorting items: in particular, we identify a suitable solution in the brood sorting
problem of swarm intelligence [8]. In brood sorting, ants cluster broods that were
initially dispersed in the environment: although the actual behaviour of ants is
still not fully understood, there are several models that are able to mimic the
dynamics of the system. Ants behaviour is modelled by two probabilities [8],
respectively, the probability to pick up Pp and drop Pd an item

Pp =
(

k1

k1 + f

)2

, Pd =
(

f

k2 + f

)2

, (1)

where k1 and k2 are constant parameters, and f is the number of items perceived
by an ant in its neighbourhood and may be evaluated with respect to the recently
encountered items. To evaluate the system dynamics, it could be useful to provide
a metric for system order: such an estimation can be obtained by measuring the
spatial entropy, as done e.g. in [20]. Basically, the environment is subdivided into
nodes, and Pi is the fraction of items within a node, hence the local entropy is
Hi = −Pi log Pi. The sum of Hi having Pi > 0 gives an estimation of the order
of the entire system, which is supposed to decrease in time, hopefully reaching
zero (complete clustering).

We aim at generalising this approach for an arbitrary number of item kinds,
and we call it collective sort. We conceive this environment itself as a MAS,
i.e. made of artifacts and environmental agents: the goal of these agents is to
collect and move tuples across the environment so as to order them according
to an arbitrary shared criterion. We consider the case of a fixed number of tuple
spaces hosting tuples of a known set of tuple types: the goal of agents is to move
tuples from one tuple space to another until the tuples are clustered within
different tuple spaces according to their tuple type.
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Fig. 2. The basic architecture consists in a set of environmental agents moving tuples
across tuple spaces

3.2 A Solution to the Collective Sort Problem

The basic bricks are user agents and tuple spaces (realised through artifacts):
user agents are allowed to read, insert and remove tuples in the tuple spaces.
Transparently to user agents, the environment provides a sorting service in order
to maintain a certain degree of ordering of tuples in tuple spaces. This function-
ality is realised by a class of environmental agents that is responsible for the
sorting task. Hence, each tuple space is associated with one or more environ-
mental agents—see Figure 2—whose task is to compare the content of the local
tuple space against the content of another tuple space in the environment, and
possibly move some tuple. Since we want to perform this task on-line and in back-
ground we cannot compute the probabilities in Equation 1 to decide whether to
move or not a tuple: the approach would not be scalable since it requires to
count all the tuples for each tuple space, which might not be practical.

Hence, we devise a strategy based on tuple sampling, and suppose that tuple
spaces provide for a reading primitive we call urd, uniform read. This is a variant
of the standard rd primitive that takes a tuple template and yields any tuple
matching the template: primitive urd instead chooses the tuple in a probabilistic
way among all the tuples that could be returned. For instance, if a tuple space
has 10 copies of tuple t(1) and 20 copies of tuple t(2) then the probability that
operation urd(t(X)) returns t(2) is twice as much as t(1)’s. As standard Linda-
like tuple spaces typically do not implement this variant, it can e.g. be supported
by some more expressive model like ReSpecT tuple centres [21]. When deciding
to move a tuple, an agent working on the tuple space TSS follows this agenda:

1. it draws a destination tuple space TSD different from the source one TSS;
2. it draws a kind k of tuple;
3. it (uniformly) reads a tuple T1 from TSS;
4. it (uniformly) reads a tuple T2 from TSD;
5. if the kind of T2 is k and it differs from the kind of T1, then it moves a tuple

of the kind k from TSS to TSD.
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The point of last task is that if those conditions hold, then the number of tuples
k in TSD is more likely to be higher than in TSS, therefore a tuple could/should
be moved. It is important that all choices are performed according to a uniform
probability distribution: while in the steps 1 and 2 this guarantees fairness, in
steps 3 and 4 it guarantees that the obtained ordering is appropriate.

It is worth noting that the success of this distributed algorithm is an emergent
property, affected by both probability and timing aspects. Will complete ordering
be reached starting from a completely chaotic situation? Will complete ordering
be reached starting from the case where all tuples occur in just one tuple space?
And if ordering is reached, how many moving attempts are globally necessary?
These are the sort of questions that could be addressed at the early stages of
design, thanks to a simulation tool.

4 Step 2: Simulating the Collective Sort Strategy

In this section we briefly describe simulation results obtained by using the
Maude tool. Maude is a high-performance reflective language supporting both
equational and rewriting logic specifications, for specifying a wide range of ap-
plications [22]. Since Maude does not directly provide any facility for simulation
purposes, we developed a general simulation framework for stochastic systems:
the idea of this tool is to model a stochastic system by a labelled transition sys-
tem where transitions are of the kind S

r:a−−→ S′, meaning that the system in state
S can move to state S′ by action a, where r is the (global) rate of action a in
state S—that is, its occurring frequency. We do not describe here the simulation
framework since that would requires a separate treatment: interested readers can
refer to [9] for more details about Maude and a comprehensive description of
our framework.

Given the strategy described in Section 3.2, we translated it into the Maude

syntax. Our reference case sticks to the case where four tuple spaces exist, and
four tuple kinds are subject to ordering: we represent the distributed state of a
system in Maude using a syntax of the kind:

< 0 @ (’a[100])|(’b[100])|(’c[10])|(’d[10]) > |
< 1 @ (’a[0]) |(’b[100])|(’c[10])|(’d[10]) > |
< 2 @ (’a[10]) |(’b[50]) |(’c[50])|(’d[10]) > |
< 3 @ (’a[50]) |(’b[10]) |(’c[10])|(’d[50]) >

It expresses the fact that we work with the tuple kinds ’a, ’b, ’c, and ’d, and
with the tuple spaces identifiers 0, 1, 2, and 3. The content of a tuple space 0
is expressed as < 0 @ (’a[100])|(’b[100])|(’c[10])|(’d[10]) >, meaning
that we have 100 tuples of kind ’a, 100 of kind ’b, 10 of ’c, and 10 of ’d.
The formal definition of agents agenda is defined in terms of simple transition
rules. The chart in Figure 3 reports the dynamics of the winning tuple in each
tuple space, showing e.g. that complete sorting is reached at different times in
each space. The chart in Figure 4 displays instead the evolution of the tuple
space 0: notice that only the tuple kind ’a aggregates here despite its initial
concentration was the same of tuple kind ’b.
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Fig. 3. Dynamics of the winning tuple in each tuple space: notice that each tuple
aggregates in a different tuples space
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Fig. 4. Dynamic of tuple space 0: notice that only one kind of tuple aggregates here

Although it would be possible to make some prediction, we do not know in
general which tuple space will host a specific tuple kind at the end of sorting: this
is an emergent property of the system and is the very result of the interaction of
environmental agents through the tuple spaces. It is interesting to analyse the
trend of the entropy of each tuple space as a way to estimate the degree of order
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Fig. 5. Entropy of tuple spaces in the constant rate case: they all eventually reach 0,
that is, complete ordering

in the system through a single value: since the strategy we simulate is trying to
increase the inner order of the system we expect the entropy to decrease, as it
actually happens as shown in Figure 5.

5 Step 3: Tuning the Collective Sort Strategy

Such a strategy based on constant rates is not very efficient, since agents are
assigned to a certain tuple space and keep working also if the tuple space is
already ordered. We may exploit this otherwise wasted computational power
by assigning idle agents to unordered tuple spaces, or rather, by dynamically
adapting the working rates of agents. This alternative therefore looks suited to
realise a strategy to more quickly reach the complete ordering of tuple spaces.

In order to adapt the agents rate, we adopted spatial entropy as a measure
of system order. If we denote with qij the amount of tuples of the kind i within
the tuple space j, nj the total number of tuples within the tuple space j, and
k the number of tuple kinds, then, the entropy associated with the tuple kind i
within the tuple space j is

Hij =
qij

nj
log2

nj

qij
(2)

and it is easy to notice that 0 ≤ Hij ≤ 1
k log2 k. We want to express now the

entropy associated with a single tuple space

Hj =
∑k

i=1 Hij

log2 k
(3)
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Fig. 6. Entropy of tuple spaces in the variable rate case: the system reaches the com-
plete ordering since step 3000

where the division by log2 k is introduced in order to obtain 0 ≤ Hj ≤ 1. If we
have t tuple spaces then the entropy of the system is

H =
1
t

t∑

j=1

Hj (4)

where the division by t is used to normalise H , so that 0 ≤ H ≤ 1. Being t the
number of tuple spaces then it also represents the number of agents: let each
agent work at rate Hjr, and tr be the maximum rate allocated to the sorting
task. If we want to adapt the working rates of agents we have to scale their rate
by the total system entropy, since we have that

γ

t∑

j=1

rHj = tr ⇒ γ =
t

∑t
j=1 Hj

=
1
H

(5)

then each agent will work at rate rHj

H where Hj and H are computed periodically.
Using load balancing we introduced dynamism in our model: indeed in each

simulation step the activity rate associated with a tuple space—i.e. the proba-
bility at a given step that an agent of the tuple space is working—is no longer
fixed, but it depends on the entropy of the tuple space itself. Hence, as explained
above, agents belonging to completely ordered tuple spaces can consider their
goal as being achieved, and hence they no longer execute tasks. Moreover, this
strategy guarantees a better efficiency in load balancing: agents working on tuple

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Designing Self-organising MAS Environments: The Collective Sort Case 267

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1000  2000  3000  4000  5000

E
n
t
r
o
p
y

Time

Constant Rate
Variable Rate

Fig. 7. Comparison of global entropy in the case of constant and variable rate: the
latter reaches the complete ordering quicker

spaces with higher entropy, have a greater activity rate than others working on
more ordered tuple spaces.

Using the collective sort specification with variable rates, we ran a simulation
having the same initial state of the one in Section 4: the chart of Figure 6 shows
the trend of the entropy of each tuple space. Comparing the chart with the one
in Figure 5, we can observe that the entropies reach 0 faster than the case with
constant rates: in fact, at step 3000 every entropy within the chart in Figure 6
is 0, while with constant rates the same result is reached only after 4600 steps
in Figure 5. The chart in Figure 7 compares the evolution of global entropy
(see Equation 5) in the case of constant and variable rates: the trend of the
two entropies represents a further proof that variable rates guarantee a faster
stabilisation of the system, i.e. its complete ordering.

6 Related Works

Since the environment plays a crucial role in MASs, existing methodologies are
incorporating guidelines for environment design. Furthermore, there exist a few
methodologies also considering issues related to self-organization: we will briefly
describe some of these methodologies and design practices.

In [14] it is recognised that traditional methodologies cannot help complex
systems engineers: indeed, the required coordination between components is
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incompatible with the decomposition approach. We agree with that consideration
and do not follow the decomposition approach, rather look for suitable solutions
among the catalogue of known self-organising systems. Furthermore, in [14] some
useful guidelines are provided for the engineering process, although they are not
organised in an actual methodology.

In [23] an architecture for MAS-based manufacturing control application is
described. In particular, they describe an architecture and a case study which
initial solution is inspired by stigmergy in ant colonies: although, they do not
provide any hints on how to apply their approach to other domains or problems.

A more general approach is presented in [24] and focuses on reactive MAS
for collective problem solving. A problem model is specified in the environment
and constraints are assimilated to environment perturbations: agents collectively
solve the problem by regulating environment perturbations. Hence, the MAS as
a whole acts as a regulation process, in a way similar to automatic control.
The methodology proposed is articulated in four steps, namely (i) defining the
problem model, (ii) defining agent perceptions, (iii) defining agent interaction
mechanisms and (iv) measuring the result as an emergent structure [24]. Al-
though, methodology mainly focuses on problem solving suggesting that it is
not well suited for environments as service providers. Instead, the main focus
of our contribution is on developing a methodology for environments offering
services with self-* capabilities, where environment is conceived as a run-time
entity.

A more comprehensive methodology explicitly tailored for self-organising sys-
tems is ADELFE [13] which covers all the steps involved in adaptive systems
engineering. Nonetheless, the authors overlooked the two most important issues
in self-organization, that is (i) a general approach for devising a solution by emer-
gence and (ii) metrics and performance assessment of the solution provided. Our
approach, compared to ADELFE, is less comprehensive: composing them would
however be an interesting future work.

7 Conclusion and Future Work

In this article we discuss an approach to the design of self-organising MAS envi-
ronments: as far as methodological aspects are concerned, the approach relies on
formal methods and tools for modelling and performing stochastic simulations.
We briefly describe our A&A meta-model for MAS based on agents and arti-
facts, and discuss a basic architecture for self-organising environments: this solu-
tion features environmental agents as artifacts managers for the self-organisation
process.

To better clarify our approach, we consider the case of a self-organising envi-
ronment featuring automatic clustering of tuples of the same kind. The solution
to this problem, that we call collective sort, has been derived from the swarm
intelligence problem known as brood sorting, which we consider as a paradig-
matic application of emergent coordination through the environment. Then, we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Designing Self-organising MAS Environments: The Collective Sort Case 269

elaborate on the idea of collective sort by evaluating entropy as a possible metric
to drive the self-organisation process, showing its effectiveness.

Currently, we are working to refine the simulation framework developed on
top of Maude, and to implement the collective sort application in TuCSoN.
Future works include

– deeper testing of the convergence properties of the strategy;
– applying advancements in the field of formal methods, for the analysis of

system specifications;
– identifying applicable patterns from self-organisation theory to the engineer-

ing of MAS environments.
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